
The C3D File Format

User Guide

By Motion Lab Systems

This manual was written by Motion Lab Systems using ComponentOne Doc-To-Help.™

Updated Thursday, January 17, 2008

Trademarks
All trademarks and registered trademarks are the property of their respective owners.

Motion Lab Systems, Inc.
15045 Old Hammond Highway • Baton Rouge, LA 70816-1244

Phone (225) 272-7364 • Fax (225) 272-7336
Email: support@motion-labs.com

http://www.motion-labs.com

Printed in the United States of America
© Motion Lab Systems, Inc. 1997-2008

mailto:support@motion-labs.com
http://www.motion-labs.com/

Contents

Revision History 1
Changes and Errata ..1

Redistribution 5
Terms and Conditions..5

Glossary of Terms 7

Foreword 11
Introduction ...11

Preface 13
About this manual..13

The C3D file format 17
Introduction ...17
The Basic C3D Structure ...21
Overview ...23
Additional Information ..28

The Header Section 31
C3D File Header ..31
Description...32
Header events ..35

The Parameter Section 39
Overview ...39
Parameter header ...41
C3D Parameter Files..43
Group and Parameter Formats ...46
Security..52

The 3D/Analog Data Section 55
Overview ...55
Description...55
Scaling Resolution ...65

Required Parameters 69

The C3D File Format User Guide Contents • i

Overview ...69
The POINT group ..71
The ANALOG group...74
The FORCE_PLATFORM group..86

Application Parameters 97
Overview ...97
The POINT Group ...97
The ANALOG Group .. 101
The SEG Group ... 101
The SUBJECT Group .. 103
The SUBJECTS Group.. 104
The MANUFACTURER Group.. 106

Additional Parameters 107
Unofficial extensions ... 107
The TRIAL Group ... 107
The EVENT_CONTEXT Group ... 108
The EVENT Group.. 109

C3D file basics 113
Creating a C3D file.. 113
Reading a C3D file .. 115
Hints and Clues.. 116

The Future of C3D 117
Discussion.. 117
Usability and Elegance .. 120
Conclusion ... 120

Index 123

ii • Contents The C3D File Format User Guide

Revision History

Changes and Errata
This C3D documentation has its origins in the original concise definition written by
Dr. Andrew Danis in the late 1980’s. The original description was available for
many years as an ASCII text file and, apart from the AMASS manuals, this was the
only public source of C3D format information. The original documentation file is
still available from the C3D web site but it is no longer maintained and contains
some inaccuracies.

The following history is in reverse chronological order, starting with details of the
most recent revisions.

January 17th, 2008
Corrected an error in the manual that stated (incorrectly) that the ANALOG:USED
parameter was stored in the C3D header. The ANALOG:USED value is not stored in
the C3D header but can be calculated from two values that are stored in the header.

Added a description of the sampling rate restrictions for both POINT and ANALOG
data that are implicit in the C3D format but had not been explicitly stated. Added
some notes on analog scaling values pointing out that using incorrect scale values
can cause the data to be corrupted. Added numbering to each of the “Notes for
Programmers” sections to make it easier to refer to them.

This release provides some additional information on force platform types that have
been described by C-Motion. These force plate descriptions are currently
incomplete.

January 25th, 2006
The description of the storage of analog data parameters in the C3D file header has
been re-written and the description of analog data storage has been expanded. An
example has been added to demonstrate how the various parameters that describe the
analog data are calculated. The original descriptions contained a couple of errors
and were hard to understand.

This release restores a chapter on additional C3D parameters that provides
information on parameters and groups that have been introduced to the C3D file
format by various software applications or motion capture manufacturers. These
groups are becoming common in C3D files, notably the MANUFACTURER and EVENT
groups, together with other groups such as the SEG and TRIAL groups that provide

The C3D File Format User Guide Revision History • 1

additional information, but are not required by the original C3D format description.
The EVENT and EVENT_CONTEXT groups are particularly interesting as they provide
a flexible method of storing event and other time specific data within the existing
C3D format using parameters.

July 20th, 2005
Added some additional explanation of the header word that describes the number of
analog samples in a 3D frame.

Updated the definition of the FORCE_PLATFORM:ZERO parameter to make it clear
that only a value of 0,0 indicates that no baseline offset correction is to be applied to
the force platform data.

Minor grammatical changes to reserve the word “section” for use with parts of the
C3D file description and avoid confusion with parts of the manual and
documentation.

July 6th, 2004
Added descriptions of the ANALOG:FORMAT and ANALOG:BITS parameters that
required to enable software applications to read C3D files that contain unsigned 16-
bit integer data. These can be found at the end of the chapter discussing the required
analog parameters. These descriptions, and an additional discussion at the start of
the chapter, should be read carefully by anyone attempting to read or write 16-bit
analog data values in C3D files. This is mandatory reading for anyone maintaining
3rd party applications that read analog C3D data.

The possibility of encountering unsigned 16-bit integers within the analog data
storage has lead to substantial alteration of the descriptions of most of the parameters
controlling analog data. In particular, the chapter describing the ANALOG:OFFSET
parameter has had to be completely rewritten to accommodate the possibility of
interpreting the parameter as either a signed or unsigned integer value depending on
the format used to store analog data values. A brief chapter has been added at the
end of the ANALOG:OFFSET discussion that describes methods of “zeroing” analog
data to remove measurement offsets. While this document takes no position as to the
merits of any of the data zeroing methods described, users are strongly encouraged to
use signed integers when storing analog data values where ever possible.

The description of the ORIGIN(3) parameter for TYPE-3 force plates has been
changed to make it clear that this value is normally negative.

Various typographic errors have been either fixed (or moved to new areas of the
document). Please let us know if (when) you find any errors or vague descriptions
that could be improved. Please feel free to write additional descriptions or items for
inclusion in this document and submit them to the C3D-L list.

To keep the bankers, lawyers and other folk happy, a formal redistribution clause
setting out the terms and conditions for the redistribution of this document by third
parties has been added to the manual. This simply sets out the previous “freely
available to all” policy in more formal terms.

February 16th 2003
The chapter describing analog scaling has been expanded to include a worked
example showing the calculation of the scale factor for a typical load cell. The C3D
File basics and final chapter on the future of the C3D format have been expanded
with addition information and commentary.

2 • Revision History The C3D File Format User Guide

June 22nd 2002
Dr. Andrew Dainis has contributed a foreword to the manual. This version of the
manual contains additional information about the concept of Parameter Files and
points out that they are not an essential part of the C3D specification. Additional
information has bee added to the description of the CAL_MATRIX parameter, which
now explicitly states that it uses the Calibration matrix while TYPE-2 plates use the
Sensitivity matrix.

The manual introduces the concept of signed and unsigned C3D files to
accommodate the issues raised by the use of unsigned integers and bytes within the
parameter section of C3D files. This has involved a major re-work to explicitly state
the integer and byte types (signed vs. unsigned) throughout the manual. The
chapters describing non-essential C3D parameters and manufacturer specific
parameters have been removed from this release. In addition to the printed manual
and Adobe PDF document, this release is available in HTML on the C3D web site
and may be viewed live.

April 7th 2002
Revised with substantial editorial changes throughout to improve readability, i.e. the
replacement of the word “REAL” with the more common term “floating-point.” The
description of the structure of parameter files has changed substantially and several
pages have been added to describe the calculation of analog scale factors,
particularly with reference to force platforms. The manual now includes examples of
the calculations for each type of force plate. A short description of the history of the
C3D format has been added to the introduction.

October 28th 2001
The first version of this manual was created as a result of user requests during the
C3D User Group discussions sponsored by Motion Lab Systems Inc., at the
2001Gait and Clinical Motion Analysis Society meeting in Sacramento, California.
This version was released in print and as an Adobe PDF document on the C3D web
site.

The C3D File Format User Guide Revision History • 3

Redistribution

Terms and Conditions
Redistribution and use of this document in source and binary forms are permitted
provided that the following conditions are met:

• Redistributions of this document in source form must retain this list of
conditions, and the following disclaimer.

• Redistributions in binary form must reproduce this list of conditions
and the following disclaimer in the printed documentation and/or other
materials provided with the distribution.

• Neither the name of Motion Lab Systems, nor the names of any of the
document contributors may be used to endorse or promote products
derived from this documentation without specific prior written
permission.

THIS DOCUMENT IS PROVIDED BY THE CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The C3D File Format User Guide Redistribution • 5

Glossary of Terms

This glossary contains definitions of some important terms used in the C3D
documentation. In some cases, terms such as record, block, and section, for
example, are used in ways that may appear unconventional to many users with a
traditional programming background. The use of these terms in this manual is an
attempt to describe the C3D format in a coherent fashion as a vehicle for the storage
of data rather than in a strict programming environment.

3D Frame
Each 3D frame consists of one or more 3D points or Analog Data Samples that can
be considered to be the values of the measurement variables at a single instant of
time. For 3D data this avoids the misunderstandings that can be caused by the use
and misuse of the terms “Video Frame” and Video Field” particularly since C3D
files can be generated by non-video based motion capture systems. All 3D frames
are recorded in sequence at regular intervals defined by the parameter
POINT:RATE, which is written as a frequency value in Hertz. A 3D frame may
contain zero or more 3D points as recorded in the parameter POINT:USED.

Since the C3D format is a general format intended for biomechanical data storage, it
is possible to create C3D files that contain only analog data values without any
associated 3D data values.

3D Point
A 3D point is a single measurement of a point as an offset from the origin of the
measurement system. In its most basic form this consists of three coordinate
measurements (X, Y, and Z) although it is possible to record fewer dimensions by
setting any unused coordinates to zero.

In addition to the X, Y and Z coordinates, the C3D format requires additional
coordinate information to be stored with each 3D point that describes the coordinate
measurement properties – see Residual and Camera Contribution below.

Integers and Bytes
Many parameters and data values are recorded in the C3D file as integer values. In
the original C3D implementation, integer values in C3D files were always stored as
16-bit signed integers (that is numbers in the range of –32768 to +32767) and 8-bit
signed bytes (a range of –128 to +127).

The C3D File Format User Guide Glossary of Terms • 7

However, in many cases, the use of signed integers and bytes reduces the range
available for parameter and data storage – as a result, it is common to find unsigned
integers and bytes used in many C3D files.

Analog Data Sample
Each analog data sample consists of an identical number of analog measurements
that have all been recorded at a single instant of time from each analog channel that
is being sampled. All analog data samples are recorded in sequence at regular
intervals defined by the parameter ANALOG:RATE, which is written as a frequency
value in Hertz. It is required that every analog data sample must contain the same
number of analog measurements as defined by the parameter ANALOG:USED.

Camera Contribution
The camera contribution value is also called camera mask. The calculation of 3D
data locations from 2D requires at least two observers (generally cameras). In many
cases, more observers are used. When more than two observers may contribute to
the calculation of a 3D location, it is useful to record which of the observers
contributed to the calculated measurement. The C3D point record allows up to seven
observers (generally, but not necessarily, cameras) to record whether or not their data
was used to generate the 3D Point measurement.

This is information specific to each data collection environment and can be very
useful for debugging and quality control as it allows a user to identify the cameras
(or observers) that produced information useful in 3D Point calculations.

Residual
The residual of a 3D Point is calculated at the same time that the position of the 3D
point is calculated. It is the average error distance, calculated by the
photogrammetry software, which prevents all measurement rays from meeting at an
identical point in space.

In general, lower residual numbers tend to indicate that the 3D point locations are
more accurate when these numbers are derived from measured 2D data and will
always be absolute, non-zero values. Residual values of zero indicate that the point
was not directly derived from measurements, i.e. it was generated by interpolation or
filtering. Negative residual values indicate that the point is invalid.

Parameters
The C3D file format defines a method of recording information about, or associated
with, the raw data contained within the file. This information is stored in objects
called “parameters” which can be Floating Point, Signed Integer, Byte, or ASCII
string values. Parameters are kept in collections depending on their use – these
collections are called “groups” and every parameter is a member of a group.

Individual parameters have names and are generally referred to by placing the group
name first, separated from the parameter name by a colon e.g.,
GROUP:PARAMETER

8 • Glossary of Terms The C3D File Format User Guide

Block
This manual describes the C3D file as being composed of a number of 512-byte
blocks of information. Various data sections within the C3D file are aligned on
multiples of 512 bytes and pointers to sections within the C3D file structure are
generally stored as block counts. The choice of a 512-byte block size for the low-
level structure of the C3D file is purely a historical artifact due to the use of
FORTRAN in the original PDP-11programming environment.

The term record is used to describe individual units of information such as
parameters and data samples that are stored within various sections in the C3D file.
Individual sections and records within the C3D file may cross 512-byte block
boundaries.

Section
This manual uses the term section to describe the layout of the information within
the C3D file. C3D files are described as being composed of three or more sections
(the basic sections are header, parameters, 3D data), where each section contains
collections of records that store information (parameters, 3D points, analog samples
etc). A section is always at least one, or more, 512-byte blocks in size.

Records
The sections within a C3D file contain information stored in records. This manual
will consistently use the term record to describe a unit of data storage within the C3D
format. In this context, the term record should be seen more in the terms of database
usage than a file structure.

Thus, all C3D files contain a header record (i.e. the header section), parameter
records are stored within the parameter section, and data records (3D and/or analog)
are stored within the data section etc.

DEC, SGI/MIPS and Intel
As a result of the implementation of the C3D file format on several different
hardware platforms, C3D files can use one of three different floating-point
representations, DEC, SGI/MIPS, and Intel, and one of two associated signed integer
representations – big endian and little endian. These describe the order in which
bytes, representing numbers, are stored in memory and therefore within the C3D file
itself.

Both the DEC and Intel processors use the little endian method where the lowest
bytes are stored first in memory while the SGI/MIPS processors use the big endian
method. The endian structure information can be retrieved from the parameter
header record at the start of the parameter section.

In practice, the majority of C3D data is stored using DEC integer or Intel floating
point format.

The C3D File Format User Guide Glossary of Terms • 9

Foreword

Introduction
During 1986 – 1987, my partner, Douglas McGuire, and I undertook the task of
developing a suite of commercial software programs to facilitate the generation of
accurate three-dimensional (3D) data from video camera measurement systems. The
result of this effort was AMASS (ADTech Motion Analysis Software System) which
included components for camera linearization, system calibration, automatic marker
tracking at the 3D level, 3D marker identification, and a graphics program (ADG) to
display the final results which were in the format of C3D files. I must thank the
Biomechanics Laboratory at the National Institutes of Health (Bethesda, Maryland),
and in particular, Dr. Lynn Gerber and Dr. Steven Stanhope, for providing
encouragement and support through of laboratory facilities that enabled the project to
be completed.

Shortly after its completion AMASS was licensed to Oxford Metrics Ltd. (Oxford,
England), and sold independently to a number of biomechanics laboratories. The
subsequent introduction and success of the VAX/VMS based Vicon-VX system by
Oxford Metrics resulted in the widespread use of AMASS and C3D files within the
biomechanics community

In the past, several factors have contributed to prevent a still wider acceptance of the
C3D file format. The first was the lack of thorough and complete documentation of
the file structure and parameter contents by the AMASS manuals. The second,
partially resulting from the first, was an insufficient understanding by programmers
of the capabilities and flexibility of the file structure. This lack of understanding
resulted in some attempts to put “round pegs into square holes”, and generated a
legacy of C3D files and applications that digressed from the original format and
intention. Many of these files and their applications are still around today and cause
considerable problems for programmers who wish to handle every C3D file. A third
factor was that a formal standard for the format was never established or universally
agreed upon, resulting in uncertainties for programmers trying to implement it. In
my estimation, this manual should go a long way towards belatedly overcoming all
of these shortcomings.

While I no longer have any commercial interests in the C3D file format, I will
continue to be available to provide assistance and support for its promotion as a tool
for all those who wish to use its capabilities.

May 2002

Andrew Dainis, Ph.D.
adainis@hardynet.com

The C3D File Format User Guide Foreword • 11

mailto:adainis@hardynet.com

Preface

About this manual
The C3D file format has been placed in the public domain to promote the easy access
and exchange of biomechanical and other data formats. The C3D file format may be
used by anyone without requesting permission or without payment of any license fee.
This document may be copied in its entirety for commercial or non-commercial use
and may be included at no charge with any hardware or software application that
creates or uses C3D files.

Intended Audience
This manual contains complete details of the public domain specification of the C3D
file format and is intended to provide all the information necessary to allow anyone
to support standard C3D files in software applications as well as biomechanics,
engineering or other data collection environments that uses C3D files. It provides
detailed technical documentation for:

• Application and system programmers who write software applications
that create or access C3D files containing 3D point and analog channel
information.

• Engineers who need to configure or set up data collection environments
that use the C3D format to store data.

• End users who want to understand how their data is stored.

While the manual occasionally assumes that the reader is reasonably comfortable
with the concepts of hexadecimal notation, simple mathematics and basic
programming structures, it is not necessary to be an expert in order to use this
document.

An Important Warning
Every effort has been made to ensure the accuracy of the information contained
within this manual but it is, of necessity, supplied without any warranty or guarantee
of accuracy. No responsibility can be accepted for any injury or damage of any kind
that results from the use of the information contained within this manual.

In particular, it is important to realize that, while many Motion Capture companies
claim support of the C3D format in their products, there is no guarantee, or even a
requirement, that these implementations conform to the standards and principals

The C3D File Format User Guide Preface • 13

described in this document. Additional information on manufacturer specific C3D
implementations can normally be obtained directly from your C3D application
developer or hardware manufacturer.

You are strongly encouraged to discuss any differences between the C3D
specification, as described in this document, and your manufacturers specific
implementation, directly with your equipment manufacturer or software
vendor.

Acknowledgements
The C3D file format was conceived and developed by Dr. Andrew Dainis (ADTech)
for the AMASS 3D photogrammetry software. It would not have been possible to
write this manual without the assistance of Dr. Andrew Dainis, as well as a great
many C3D users who have provided sample data when requested and have answered
my many questions over the years. I should also like to thank Craig Smith, who was
probably the first person (outside ADTech and the NIH) to visualize the full potential
of the C3D format for the motion capture industry and lobby for it to become a
standard format. Special thanks are also due to Dr. Steven Stanhope for his support
of numerous C3D users around the world over a great many years, as well as his
persistence and efforts to develop software that can be of real use to everyone.

Particular thanks is due to Dr. Andrew Dainis who gave permission to refer to, and
quote from, the AMASS User’s and Reference Manuals, has graciously answered
many questions about the details of the format and contributed several chapters that
clarify many of the internal details, history and development of the C3D
specification. Without his help and encouragement, this manual would not exist.

Disclaimer
I work for, and am part owner of, Motion Lab Systems, Inc., a company that designs
and manufactures electromyography systems for gait analysis laboratories, as well as
being the developer of a number of software applications that use the C3D file
format. Motion Lab Systems, Inc., supports and runs the c3d.org web site.

The document has its origins in a collection of conversations, notes and emails that I
have collected over several years as we have written software that creates and
accesses files that use the C3D file format. My own personal experience with the
C3D file format goes back to 1987 with the original commercial implementation of
AMASS on Digital Equipment Corporation PDP-11 computers while operating
Oxford Metrics Inc., (1984-97) in the USA.

Motion Lab Systems, and its employees, maintain a vendor relationship with almost
all the motion capture system and other equipment manufacturers, which use the
C3D format. Neither Motion Lab Systems Inc., nor I, are employees of, or maintain
any direct contractual relationships with, any companies that use the C3D file
format.

I acknowledge the assistance and encouragement of many people in compiling the
information within this manual. While, for the most part I have taken their advice,
the structure and presentation of the information within this document has been my
own. Please let me know it you find an error or typo, or feel that I have failed to
explain some particular aspect –general questions or comments about the C3D
format should be sent to the C3D list server at c3d-L@c3d.org

Edmund Cramp, January 17, 2008

14 • Preface The C3D File Format User Guide

mailto:c3d-L@c3d.org

Motion Lab Systems, Inc.

The C3D File Format User Guide Preface • 15

The C3D file format

Introduction
The C3D (Coordinate 3D, pronounced see-three-dee) data file format is a component
of a family of file formats originally developed for the AMASS photogrammetry
software system. AMASS, which stores its output data in C3D files, was developed
by Andrew Dainis, Ph.D. as a commercial product during 1986 - 1987 to replace the
relatively inefficient and inaccurate biomechanics photogrammetry software
available at the time. The first installation was in the Biomechanics Laboratory at
the National Institutes of Health where it has been in use ever since. Located in the
United States in Bethesda Maryland, the National Institutes of Health (NIH) is one of
the world’s foremost medical research centers. As an agency of the US Department
of Health and Human Services, the NIH is a leading center for health research.

The C3D format provides a convenient and efficient means for storing 3D coordinate
and analog data, together with all associated parameters, for a single measurement
trial. The C3D file format has been in widespread use since 1987 and conforms to a
publicly available C3D file format specification. This public specification is the
basis for the information in this document.

The basic design of the ADTech file format (of which C3D is a member) was
originally driven by the desire to have a single file format that would communicate
parameters and data between the various components of AMASS (calibration,
tracking, marker identification, etc.) and also serve as the output of the final 3D
trajectory and analog data. Some high priority objectives were:

• Flexible storage of different types of data within the file.

• Flexible storage of parameters and parameter types in a “parameter
section” of the file.

• To allow parameter to have descriptive names, and actual text
descriptions so that the file could be self-documenting.

• To provide users with a single utility which they can use to add,
examine, and if necessary modify, any parameter within any file.

• The efficient and compact storage of all the necessary information
within a single file.

The essential idea behind the C3D format is that all 3D coordinate and numeric data
for any recorded measurement is stored in a single file, together with the various
parameters that describe the data. Before this time it had been (and in many
instances still remains) common for the various Motion Capture systems to store

The C3D File Format User Guide The C3D file format • 17

their recorded data in many different files, often using several unique formats. The
traditional approach presented a number of problems:

• Each manufacturer expended a considerable effort simply to document
and maintain the large number of unique file formats.

• Updates and changes to software applications required careful design to
maintain data consistency due to the number of file formats supported.

• Users were required to understand many file formats together with their
interaction and interdependence in order to get to the data that they had
recorded.

• The comparison of identical measurements between different
manufacturers is virtually impossible due to the differing data and
parameter storage methods and assumptions.

• System updates often introduced file format changes that rendered
older data unreadable to the newer applications.

The development of the C3D format effectively solved all of the above problems. A
single, well documented, binary format simplified both software maintenance and
documentation, users could access their data from a single file, and the use of a
common format made it easy for researchers and clinicians to compare information
recorded in labs with different Motion Capture systems for the first time. The
standardized and flexible design of the C3D format meant that data was no longer
obsolete each time a manufacturer released a new version of their software
applications or by advances with new hardware developments.

It is the ability to store information about the data that sets the C3D format apart
from every other biomechanics format. The C3D file usually stores the 3D and
analog data together with a small number of common parameters that describe the
3D data. The user may then define, generate, and store any number of user or lab
defined data items within the file.

The C3D format allows this to be done using a standard format so that anyone
opening the C3D file can access the information. As a result, adding parameter
information to a C3D file is very easy. Since the C3D format is not tied to any
specific manufacturer, it can be freely adapted to store the information that the users
require without making a commitment to any specific manufacturer.

A Brief History
The precursor to the C3D file format was AMASS, a binary file containing a header
block plus interleaved 3D coordinate and analog data that was used by the SELSPOT
system in the early 1980’s. An important goal in the design of AMASS was to have
a single file format which would meet all needs for both parameter input/exchange,
and data output. This goal was achieved by including a readily accessible parameter
section in every file, which not only passes parameter values but may also describe
any data included in the file. Such a file may contain parameters only, or parameters
and data as in the case of C3D files.

In the late 1980's Oxford Metrics Ltd., obtained distribution rights for the AMASS
software from ADTech (a company owned by Dr. Andrew Dainis). At this time the
AMASS software suite ran on the RSX11-M and VAX/VMS based systems
(DIGITAL Equipment Corporation), used C3D as its output data format, and was the
first software application to offer completely automatic 3D trajectory calculations for
complex moving targets. As such, it was a huge improvement on other commercial
photogrammetry software applications available at that time which all required that
the operator identify the target trajectories manually. AMASS, unlike other

18 • The C3D file format The C3D File Format User Guide

photogrammetry programs at that time, used a single file format to store all of the
parameter and data that it generated in one uniform, flexible binary file format – this
is the C3D file.

Initially, Oxford Metrics (Oxford, England) offered the AMASS software as an
option on its RSX-11M based hardware systems in the USA. Only a few AMASS
systems were sold for this operating system before the introduction of the Oxford
Metrics Vicon-VX, “Etherbox” systems under the VAX/VMS operating system.
The Vicon-VX systems offered AMASS as the sole 3D trajectory reconstruction
application and C3D as the sole output format, replacing the multitude of file formats
previously required by the RSX11-M based software. The Vicon-VX software
package integrated the AMASS software within a simple text based menu system
and was considerably more successful than its command-line driven predecessors,
eventually selling more than a hundred copies worldwide.

The first substantial “freeware” application supporting the C3D file format emerged
in 1991 with the release of ANZ, a motion analysis package written by Dwight
Meglan at Ohio State University as part of his doctoral thesis. Command line driven,
and running under MS-DOS, this package offered substantial modeling and
kinematic features that performed gait analysis, together with output graphs and
animations suitable for clinical use.

In the early 1990’s AMASS was adapted to processing raw video data files from
several other system vendors, e.g. Bioengineering Technology & Systems (Milan,
Italy), Motion Analysis Corporation (Santa Clara, USA), Peak Performance
Technologies (Englewood, USA), and was supplied as third party software to a
number of motion capture laboratories.

The introduction, in 1992, of the Vicon Clinical Manager application, running under
Microsoft Windows 3.1, generated a considerable interest in the C3D format, and its
popularity produced a large number of sales for Oxford Metrics Ltd. This
application enabled users to quickly generate clinical output graphs from motion
capture data and its popularity placed the C3D file format in the position that it
occupies today - in wide use throughout the world and probably the most common
data file format for clinical biomechanical 3D data.

With the success of the Vicon-VX product, due in large part to the sales generated by
Vicon Clinical Manager, Oxford Metrics developed a new data collection platform
for the Windows operating system (the Vicon 370) together with their own
proprietary photogrammetry software. This graphical package replaced the
command-line driven AMASS software and became the first professional Windows
based photogrammetry package on the market. Significantly, it also used the
ADTech C3D file format as its standard format for storing analog data and calculated
3D marker positions.

At about the same time, ADTech ported the AMASS software from DEC (Digital
Equipment Corporation) computers to the Intel PC computer platform and extended
the C3D format to allow data from these different computer systems to be handled
transparently.

This period also saw the release of MOVE3D, a sophisticated 3D analysis program
developed by Tom Kepple at NIH, which further broadened the use of C3D files as
input for other applications. The simultaneous availability of MOVE3D for
biomechanics researchers, and Vicon Clinical Manager for the clinical gait market,
were major factors in the creation of a significant user base for the C3D file format
in the early 1990’s.

Outside the software offered by Oxford Metrics and ADTech, the first major
commercial C3D application was the C3Deditor (Motion Lab Systems, 1997), which
enabled users to easily edit, and manipulate, C3D files in the graphical Windows

The C3D File Format User Guide The C3D file format • 19

environment for the first time. Prior to the C3Deditor the only tools available for
C3D development were a limited set of MS-DOS applications (PRM etc) released
with the AMASS software - these, together with the C3Deditor, have become the
standard against which C3D applications are evaluated.

The release of the C3Deditor made third-party C3D development easier, and by
1998, a growing number of requests from potential customers encouraged Motion
Analysis Corporation (Santa Rosa, California) to offer C3D support for its users.
There were now a total of five independent C3D application sources available
(ADTech, Oxford Metrics, Motion Analysis Corporation, Motion Lab Systems and
ANZ), all of who offered well-documented C3D support at some level. By the close
of 2001, announcements of C3D support had come from Bioengineering Technology
& Systems, Charnwood Dynamics (Rothley, England), C-Motion (Bethesda, USA),
Kaydara (Montréal, Canada), Lambsoft (St. Paul, USA), Peak Performance, PhoeniX
Technologies Incorporated, Qualisys, and Run Technologies (Mission Viejo, USA).

Although the C3D format probably has its widest use within clinical gait and
biomechanics laboratories, the format is in wide use in other areas. Estimating the
use of the C3D format in other fields, such as the entertainment and animation
industry, is difficult, but it is likely to be substantial as it is supported by several
leading animation packages.

Implementation
The C3D format is relatively complex from the programming viewpoint but, in
exchange, the format offers the user unparalleled flexibility when its features are
fully utilized within a software application. When Dr. Dainis defined the format, all
of the applications that accessed C3D files were written in FORTRAN. As a result,
many internal data structures within the C3D file are defined in ways that may seem
counterintuitive to modern C++ programmers. Additionally, all of the early
documentation for the format referred to the file contents in terms of INT (integer)
and REAL (floating point), thus requiring translations for younger programmers
unfamiliar with traditional programming concepts.

A further complication arose when C3D reading and writing software was ported to
other types of computer systems which have different internal number
representations as compared to DEC computers. The original implementation of
AMASS transparently recognizes the three types of internal number formats, DEC,
Intel, and SGI/MIPS. Floating point number structure differs in all three
architectures, while signed integer representation is the same for the first two but
differs from the SGI/MIPS architecture. This complication is not due to the C3D
format but simply reflects the existence of differing computer environments.

These issues, and the fact that some areas of the original format description were not
thoroughly documented, can result in problems when new C3D applications are
written without thorough testing. This can produce problems with other C3D
applications and occasionally, the complete inability to read the resulting “C3D” file.
The cause can be due internal format errors within the C3D file or may be simply an
internal limitation in the application:

• Many older FORTRAN-based applications cannot read C3D parameter
sections that contain more than twenty blocks of data.

• One popular C3D application determines the start of 3D data in a C3D
file incorrectly and is unable to read many standard C3D files that
contain more than one data section.

20 • The C3D file format The C3D File Format User Guide

• Another widely used clinical C3D application uses a unique
interpretation of a force platform parameter that does not agree with the
published standard.

• C3D files generated by another vendor used some nonstandard or miss-
spelt parameter names in several early versions of their software.

• Many older C3D applications support only one set of the C3D format
variants (DEC, SGI/MIPS, Intel, and INT or REAL data) - often a
problem with user-written applications.

• Some software applications claim to produce C3D files but in practice,
the files are unreadable due to various violations of the C3D
specification (i.e. files that contain mixed floating-point and integer 3D
data etc).

• There has been some confusion over the use of signed vs. unsigned
integers to store parameters within the C3D file – as a result it is
possible to encounter C3D files with negative integer parameter values
in interesting places (i.e. frame ranges and analog data offsets).

• The C3D format description does not require that sensible scale values
must be used. As a result some C3D files exist that do not contain the
correct values for the analog and point scale factors resulting in data
corruption when files are converted from floating point to integer types.

A list of major C3D application vendors is maintained at http://www.c3d.org with
details of the various C3D applications available, manufacturer’s contact information
and, in many cases, sample C3D files from the vendors. This web site is maintained
as a public resource for all C3D users and provides documentation and sample C3D
files in the various formats that may be downloaded at any time for application
testing and evaluation.

The Basic C3D Structure
This manual attempts to document the C3D format to a level that will allow a
programmer to implement applications that read, write, and create C3D files that are
interchangeable between different manufacturers and applications. Its aim is to
provide documentation of the internal details of the C3D file format so that
application programmers can maintain compatibility with existing files while
expanding the capabilities of the C3D format to meet future needs.

The design of the C3D format was originally driven by the need for a convenient and
efficient format to store biomechanics data. The C3D format stores 3D coordinate
and numeric data for any measurement trial, with all the various parameters that
describe the data, in a single file. This largely eliminates the need for trial data to
travel around with additional notes and subject information (with the ever present
danger that they will get separated from the data at some point in the travels).

The C3D file format has three basic components:

• Data – at this level the C3D file is simply a binary file that stores raw
3D and analog information.

• Standard Parameters – default information about the raw 3D and analog
data that is required to access the data.

• Custom Parameters – information specific to a particular
manufacturers’ software application or test subject.

The C3D File Format User Guide The C3D file format • 21

One design goal of the C3D file format was to make it easy for the user to list,
examine, and if necessary modify, any parameter contained in the C3D file. These
parameters give the C3D format the ability to store a multitude of information about
the data. Looked at in this way, the C3D file format combines the traditional data
storage functions with many of the characteristic of a database record, and it is these
features that set the C3D format apart from every other biomechanics storage
method.

Other goals for the C3D file format were to minimize the storage requirements,
minimize the number of files required to store the data, and provide adequate speed
and easy access to the file contents. In addition to allowing the casual user to display
and modify all of the parameters, the C3D format allows parameters to include
unique descriptions for each parameter item so that the various functions of each
parameter can be documented within the C3D file itself. This provides the flexibility
for users to store many different kinds of data and associated parameters within the
C3D file, while maintaining a degree of internal documentation that is lacking in
most other file formats.

C3D files have no significant limitations on the data, or the type and number of
parameters that can be stored – the format is easily expandable to store additional
parameters and data. In spite of this, C3D files are very much backward compatible,
and today’s C3D files remain readable with most software applications created when
the format was first introduced. At the same time, C3D files from the mid-1980’s
can be read by any properly written modern C3D application.

The C3D file format is a binary format – although ASCII files can easily include
descriptions associated with parameters and are relatively easy to access with many
applications, the ASCII format is inefficient for both storage and access. ASCII files
must generally be accessed sequentially and are very inefficient if random access to
the data is required. Binary files, on the other hand, are efficient in terms of data
storage and access, and can easily store many different parameters and associated
descriptions etc. However, binary data access generally requires a specific
application - the file organization is specific to how the data values are stored, and
applications must have a detailed knowledge of the file structure to access the stored
information. In spite of this complication, the efficiency and speed of access for
binary files provides an overriding advantage for data storage, and as a result, the
C3D format has become the choice for biomechanics data and parameter storage.

Early in the design of the C3D format it was realized that it was unlikely that one,
ironclad, specification would fit every biomechanics need. As a result the C3D file
requires a small number of common parameters that describe the fundamentals of the
3D data, and then allows the users to define, generate, and store within the file, any
number of user or lab defined data items so that anyone reading the C3D file with a
suitable application can access them.

This flexibility is the most important feature of the C3D file format and explains
both its growing popularity and the extraordinary length of time that it has been used
to store a wide range of clinical and experimental data. Hence, it is worthwhile
emphasizing:

The C3D file also contains parameters that describe the 3D data. It allows the users
to define, generate, and store within the C3D file any number of user defined
parameters so that anyone opening the C3D file can read them and use them to
interpret or analyze the data.

Thus, the C3D format treats information as if it belongs to one of two classes. These
are: Physical Measurements, and Parameters that pertain to the physical
measurements.

22 • The C3D file format The C3D File Format User Guide

Physical Measurements
The C3D specification expects physical measurements to be one of two types, either
positional information (3D coordinates) or numeric data (digital analog information).

Each 3D coordinate is stored as a raw X, Y, and Z data samples with information
about the sample – accuracy (the average error or residual), and camera contribution
(the specific observers or cameras used to produce the data).

Each sample of numeric data can contain digitized analog information from sources
such as EMG, Goniometers, Load Cells, and Force Plates etc. These samples are
synchronized to the 3D coordinate samples so that it is easy to determine the correct
numeric data values that relate to any 3D sample within the file. If desired (for high
analog sample rates etc.), the C3D format can store multiple numeric analog samples
per 3D coordinate sample.

As a result, many C3D files contain both analog and 3D data synchronized frame by
frame. This is a big improvement over the common situation of multiple OEM
formats that usually stored parameter data, analog data, and 3D data, separately in
multiple files. Storing all the related information in a single file gives a greater
degree of confidence in the data. It is easier to retrieve the relevant data and
increases the confidence that data from multiple sources such as cameras, video
equipment and force plates is synchronized in time and 3D space.

Parameter Information
In addition to physical measurement data, a C3D file will also contain information
about the data, such as measurement units and data point labels etc. However, unlike
most manufacturer-designed formats, the C3D file format can also store database
information such as the subjects name, diagnosis, and other items that may be
specific to an evaluation protocol or a specific situation.

All that is required to share this information between different C3D file users is that
they both agree that the shared data should have a particular name. The contents of
the data or the nature of the accessing system is immaterial once the users involved
agree on the description and name of any particular item. Since all C3D parameters
can be internally documented within every C3D file using the description field that is
part of every parameter record, and all parameters conform to a single format
specification, C3D files require less external documentation than almost any other
general-purpose file format.

Overview
In its broadest sense, the C3D format is a specific implementation of a more general
file format (ADTech format) that has the following characteristics:

1. The first byte in the file points to the first parameter block. The second
byte is always 0x50h (decimal 80), an ID byte indicating that this file is
written using the ADTech format.

2. The parameters are stored in groups in the parameter section of the file
according to a well-defined parameter format.

3. The parameters indicate where any other data sections are to be found
in the file, and may describe the contents of any additional sections.

In is important to realize that while many software applications claim to be “C3D
compatible” in some way, all such labels are self applied - there is no official

The C3D File Format User Guide The C3D file format • 23

standard or organization that grants the right to use the term “C3D compatible.” As
a result, the C3D user should not assume that any given C3D application would fully
conform to the specification described in this manual.

However, it is strongly recommended that all vendors of C3D applications and
software authors use the common C3D specification described here as a standard to
measure their products compliance with the C3D format description. Compliance
with the C3D format descriptions will greatly enhance the ability of any application
to generate data that can be freely accessed by other C3D applications.

If you require a specific measure of compatibility between two applications (even if
they are from the same source) then it is recommended that the applications be tested
before clinical or commercial use to verify that the required functionality exists.

General implementation
A C3D file is an implementation of the above general format where the first block of
the file comprises of the standard pointer/ID word followed by a header record that
contains a number of parameters that are, in general, copies of parameters stored
within the parameter section of the C3D file. C3D files also contain a data section
that stores 3D and analog information – the location of this data section is described
in the parameter section.

The general ADTech family of formats only specifies where the parameter section
starts in the file, and always does this through the first word of the file, which
contains a single byte pointer and ID byte. The intent is that the pointer, contained
within the first word, is used to locate the parameter section. Data within the
parameter section describes any number of data sections in the file, together with
their starting locations within the C3D file.

C3D file description
This manual specifically documents only the C3D file format, and while other
members of the family (parameters files etc.) will be briefly introduced, it is not the
intention of this author to provide documentation on every member of the ADTech
file format family.

Margin notes (like this one)
will appear throughout this
manual to emphasize points
that are significant to the
programmer or user.

The data values in C3D files are stored in either 16-bit signed integer format, or
optionally floating-point format. The format of the data can be determined by
reading the header of the C3D file at a binary level without making any assumptions
about the data format. For compatibility with Fortran, and various operating
systems, all C3D files should be thought of as consisting of blocks that are 512 bytes
long (or 256 16-bit words).

All C3D files contain a minimum of three sections of information:

A single, 512 byte, header section

A parameter section consisting of one, or more, 512-byte blocks.

3D point/analog data section consisting of one, or more, 512-byte blocks.

Figure 1 – The basic C3D file structure.

Header Section
The first section of a C3D file is the header section, which always starts at block 1 -
the first block in the file. The first word of the C3D file locates the start of the
parameter section in the C3D file, which in turn contains a pointer to the start of the

24 • The C3D file format The C3D File Format User Guide

3D data section as well as a considerable amount of detailed information necessary
to read the 3D data section and interpret the contents.

In addition to containing a pointer to the start of the parameter section, the C3D file
header also contains duplicates (with certain exceptions) of a number of other
parameters stored within the parameter section as well as a small area reserved for
storing a limited amount of event information.

The location of the 3D data section, as well as other important parameters, should
always be read from the parameter section of the C3D file. The reason that the 3D
data section location and other parameters are duplicated in the header of the C3D
file is to allow simple utilities to access the 3D data without having to read and
decode the entire parameter section.

Parameter Section
Always use the C3D header
pointer in the first word of
the C3D file to locate the
start of the parameter
section in the C3D file.

The parameter section usually starts at block number 2 in the C3D file although this
is not fixed and should not be assumed to be the case in every file. The C3D
specification requires that the parameter section start on the 512-byte block boundary
that is indicated by the pointer in the C3D file header section. The parameter section
is variable in length but is typically at least eight to ten blocks in length.

3D Data Section
The C3D file contains the 3D point coordinate and analog data section, which is
usually located at some point after the parameter section. The C3D specification
states that the data section starts on the 512-byte block boundary that is indicated by
the pointer POINT:DATA_START in the C3D parameter section.

Always use the parameter section pointer POINT:DATA_START to locate the start of
the 3D data section in the C3D file.

The 3D and analog data section is variable in length depending on the amount of data
stored. C3D files can contain any combination of 3D point data and analog data
including 3D data only, and analog data only.

It is important to remember that the C3D specification allows additional data
sections to exist in the area between the end of the header section and the start of the
3D and analog data section. Few applications store additional data sections in this
area at this time although most of the proposals to extend the C3D file format focus
on adding additional sections of data in these areas of the C3D file. Software
applications that conform to the C3D specification and use the C3D parameter
section and C3D header information correctly should be able to handle the presence
of additional data blocks within the C3D file without any problems.

The common format used to store 3D coordinate and analog data is the signed
integer format – each sample is stored as a 16-bit signed integer value in the range of
–ve 32768 to +ve 32767. These signed integers are then scaled into real world
values, using a common floating-point scaling factor stored within the parameter
section. However, the facility for the data to be written entirely in floating point
format is also available. This is useful for storing processed data (especially analog
data) where the signed integer form may not provide sufficient precision.

The C3D File Format User Guide The C3D file format • 25

Summary
The examples that follow
use hex dumps of sample
C3D files – you may find it
useful to view the C3D file
in this way to understand
the internal data structures
as they are presented.

C3D files are composed of a number of 512-byte blocks of information that contain
the individual sections and records within the C3D file. All C3D files contain three
or more sections, each section being comprised of at least one 512-byte block.
Within the sections of the C3D file, information is stored in records. All C3D files
contain a header record (i.e. the header section), parameter records stored within the
parameter section, and data records (3D and/or analog) stored within the data
section.

It is worth mentioning at this point that, in deference to the original Fortran
environment used to create most C3D applications during the early years, this
manual describes C3D file as being composed of a series of 512-byte blocks of
information. Programmers often prefer to think of these blocks in terms of their
original description within Fortran as 512-byte “records” that translated directly to
the physical disk sector storage locations that set physical limits on the storage of
data.

In today’s programming environment, this 512-byte constraint is largely eliminated.
Its only legacy within the C3D format is that all data or parameter sections start on
multiples of 512 bytes. This documentation consistently refers to these 512-byte
units of information as blocks rather than the traditional “record” thus freeing the
term record to be used to describe individual units of information such as parameters
and data samples.

This is more in keeping with the view that the C3D file is a collection of information
and data – thus freeing us to discuss parameter records, point records and analog
records as items of information that are stored within different sections in the C3D
file.

Limitations
As with any file format, there are a few limitations that are inherent in the standard
C3D file format description. These do not cause any problems for the average user
but anyone working with C3D files needs to be aware of them.

Using Signed Numbers
C3D files use signed bytes
and integers by default.

The use, by default, of signed 16-bit integer and signed 8-bit byte numbers for
parameter and data storage in C3D files is, in part, a consequence of using FORTRAN
to create most of the original C3D applications, as well as a desire to keep the format
relatively simple.

However, in many cases, the use of signed numbers limits the amount of data that
can be stored in the C3D file, the size of C3D parameters and the size of parameter
arrays. For instance, according to the formal C3D specification, the maximum
number of 3D frames that can be stored in a C3D file is 32,767 – a result of the use
of a signed 16-bit signed integer parameter (POINT:FRAMES) to record the number of
3D frames stored in the file. This limits the length of 3D data that can be recorded in
the C3D file to just over 9 minutes at 60Hz (32767 / (60 * 60)) or correspondingly
less at higher 3D frame rates. This limitation is complicated by the use of signed 16-
bit signed integers in the C3D file header to record the starting and ending frame
numbers. As a result, if the first 3D frame number is not 1, the total length of time
available for the C3D frame storage is proportionally reduced based on the C3D file
header limitations (these values are not stored in the parameter section).

26 • The C3D file format The C3D File Format User Guide

The use of an 8-bit pointer to locate the start of the parameter section and a 16-bit
signed integer to record the start of the 3D data section also places some limits of the
C3D file structure:

• The 8-bit pointer to the start of the parameter section limits the
placement of the start of the parameter section to any 512-byte block
within the first range of 1 to 127 – effectively within 64kB
(127*512/1024) of the start of the C3D file.

• The start of 3D data is recorded by a signed 16-bit integer parameter
(POINT:DATA_START) that points to the location of the first 512-byte
block used to store 3D point and/or analog data. This limits the
placement of the start of 3D data storage to any 512-byte block
boundary within the first 16Mb (32767*512/1024) of the C3D file.

The size of parameter dimensions is limited by the use of a signed byte as a pointer
or index within the parameter records. Parameters cannot contain more than 127
characters or have more than 127 separate values, in any one dimension etc.

Using Unsigned Numbers
In some instances, the use
of unsigned bytes and
unsigned integers in C3D
parameters is permitted.

In many cases the limitations caused by using signed integers and bytes within the
C3D file can be ignored provided that the user, or applications programmer, is aware
that under some circumstances this may “break” older software applications. The
use of unsigned integers and unsigned bytes will effectively double that amount of
parameter and data storage that is available within the C3D file.

Using unsigned integers, the maximum number of 3D frames that can be stored in a
C3D file is 65,537 if the parameter (POINT:FRAMES) used to record the number of
3D frames stored in the file, is treaded as an unsigned integer. This increases the
length of 3D data that can be recorded in the C3D file to just over 18 minutes at
60Hz (65537 / (60 * 60)).

In addition, interpreting the parameter (POINT:DATA_START) as an unsigned integer
allows the 3D data storage section to start anywhere within the first 32Mb
(65537*512/1024) of the C3D file.

The length of most parameter items can be stored using unsigned bytes as pointers or
indexes within the parameter records. This extends the amount of parameter storage
available from 127 characters per value to 255 characters and allows each parameter
dimension to have up to 255 separate values (the signed limit is 127).

This manual will refer to
these two types of C3D file
as “Signed C3D” files and
“Unsigned C3D” files.

It is very important to realize that the use of unsigned integers and unsigned bytes
within the parameters of a C3D file may create problems for older C3D applications
that will interpret large unsigned values as negative values. This may cause internal
parameter buffers to overflow, large arrays to be interpreted with negative indexes
and may result in older software applications crashing, or generating erroneous
results.

The use of unsigned or signed integers within a C3D file does not affect the
interpretation of data within the various sections. For instance, when using the
integer file formats, point data within the 3D data section is always stored as signed
integer values. Analog data within the 3D data section is also stored as signed
integers by default although under certain circumstances unsigned integers are
permitted (see page 86 for details).

It is important to realize that Signed C3D files and Unsigned C3D files are, for all
practical purposes, identical unless they contain more than 32,767 3D frames or use
parameters that contain more than 127 variables. Both types of file use the same
format for storing 3D and analog data values, which are always stored as signed

The C3D File Format User Guide The C3D file format • 27

integers. When viewed at a binary level there is no structural difference between
signed and unsigned C3D files.

Sample Rate Limitations
All C3D files support a single sample rate for POINT data and a single sample rate
for ANALOG data. The ANALOG sample rate is always either the same as the POINT
rate or an exact multiple of the POINT rate. While this may seem restrictive, this
requirement ensures that the ANALOG data is always exactly synchronized with the
POINT data. In addition, this restriction allows any application to easily calculate the
exact location of any frame of data within the C3D file.

One consequence of this limitation is that all analog data is sampled at the highest
sample rate required by the channel with the highest frequency signals.

Additional Information
Check with your supplier
for additional information
if you are working with a
motion capture system or
software package that uses
the C3D format.

Several additional sources for C3D information exist – principally, the public C3D
text description, and the printed documentation supplied with the commercial
AMASS photogrammetry software sold by ADTech. These both provide some basic
documentation of the C3D format – the public text description being a concise
ASCII specification while the printed AMASS documentation provides more of an
end-user view. Additionally, various other manufacturers implement support for the
C3D file format and offer supplemental documentation to their own users.

This manual contains several pages entitled “Notes to Programmers” which highlight
specific points that are considered especially important to anyone implementing
support for the C3D file format and contain the answers to many common questions.

A publicly accessible Internet web site for the C3D format is maintained at
http://www.c3d.org. This contains the most up to date copy of the current C3D
format specification, together with links and contact information for any software or
hardware manufacturer who wishes to be listed. The current version of this manual,
as well as other documents, are maintained on the c3d.org Internet site.

In addition to the World Wide Web site, an Internet list server is available for C3D
related questions and discussions – access details for this can also be found on the
C3D web site. The web site hosts a collection of applications and files that can be
downloaded via anonymous ftp service. These include:

• Public domain software applications that access C3D files.

• Sample source code for reading and writing C3D files.

• Evaluation copies of commercial software C3D applications.

• Drivers for accessing C3D files via MATLAB and LabVIEW.

• A free SDK for building C3D applications including sample
applications with full source code in C++ and Visual Basic.

• Sample C3D files in various formats from different manufacturers.

• This manual in Adobe PDF formatted for printing.

• This manual, formatted for access via any Internet browser.

28 • The C3D file format The C3D File Format User Guide

http://www.c3d.org/
http://www.c3d.org/

Programs are available
free of charge that allow
anyone to view or modify
the contents of a C3D file.

A copy of the ADTech PRM program is also available from the web site together
with PRMLIB, a FORTRAN library file access library, and documentation. PRM
provides the user a means of accessing the parameters in C3D and separate
parameter files. It is a command line driven MS-DOS application that operates
interactively through a few simple commands and provides output to terminal screen,
printer, or file. The PRM program allows the user to create, examine, change and
delete parameters in the parameter section of any C3D or ADTech parameter file.

It should be noted that the PRM utility, in common with many older C3D utilities,
might have problems handling C3D files that do not strictly adhere to the original
signed integer C3D standard.

Many of the examples in this manual use hex dumps to show the internal structure of
the parameters. It is worth noting that the command “SH” in the freely available
ADTech command line program PRM produces a decimal dump of each byte,
together with its corresponding ASCII character, of the entire parameter section.

Program libraries and a
C3D software development
kit are available free of
charge that make it easy to
write Visual Basic and
C++ applications that
access C3D files from
within Word, Excel, and
Access etc.

Also available is the C3Dserver, a C3D software development kit from Motion Lab
Systems, Inc., that provides high-level access to the C3D file format and works with
many different programming languages and applications such as Visual Basic, C++,
Java, Word, Access, and Excel etc. The C3Dserver includes an example software
application written in Visual Basic, together with full Visual Basic source code, that
implements a functional C3D file editor. A C++ application (with source code) that
generated C3D files is also included. A full manual (in Adobe PDF format) is
supplied with the C3Dserver package. This is probably the easiest way for most
people to learn to access C3D files. The C3Dserver is available free of charge for
non-commercial use.

Evaluation copies of the C3Deditor and MLSviewer can also be downloaded from
the C3D file site. The C3Deditor is a graphical C3D file editor that can change and
edit almost any element of the C3D file, filter data, interpolate and add or delete
analog channels and 3D point information. The MLSviewer is a general purpose
C3D file viewer that displays the contents of C3D files but does not alter them in any
way. Both programs are supplied with manuals. Information on Motion Lab
Systems products is available on the Internet.

Up-to-date information,
sample files and user
written applications are
available at any time from
the C3D web site.

The C3D web site includes a large collection of sample C3D files from various
hardware systems as well as specific sample test files that can be used to ensure that
applications that you write or use are fully C3D compatible. Copies of C3D files
from various sources (including specific compatibility test files) can be downloaded
from the C3D web site and the FTP site.

The C3D web site also hosts an Internet mailing list - members of the C3D mail list
can send questions about specific implementations for the C3D format or requests
for additional information to the C3D list server. Anyone can join the C3D list
server as membership is free – membership is only required to prevent the
distribution of spam and viruses. Instructions for joining the list can be found on the
C3D web site in the Internet – http://www.c3d.org.

Copies of this document can be downloaded free of charge from the C3D web site in
several different formats and redistributed with other applications at no charge
subject to the agreement that is part of this manual.

The C3D File Format User Guide The C3D file format • 29

http://www.c3d.org/

The Header Section

C3D File Header
A standard 512-byte header section record is found at the beginning of all C3D files
and in its most basic form, this provides a pointer to the location of the start of the
parameter data. In addition, it also provides some basic information about the format
of the C3D file and the data stored in the C3D file. This information is principally
copied from the parameter section of the C3D file and software applications should,
in general, read the parameter section to obtain the “master” records.

A single 512 byte header section

A parameter section consisting of one or more 512-byte blocks.

3D point/analog data section consisting of one or more 512-byte blocks.

Figure 2 - The header section within the C3D file structure.

The information in the C3D header record is arranged so that any software
application can quickly open a C3D file and obtain information about the file and its
contents, without the need to understand the more complex format of the parameter
section. Among other items, the following parameter section values can be read
from the C3D file header:

• The number of trajectories stored within the file.

• The number of analog channels recorded in the file.

• The number of trajectory samples stored within the file

• The number of analog samples stored within the file

• The trajectory and analog sample rates.

• The location of the start of the interleaved 3D and analog data records
within the file.

• The location of the start of the parameter records within the file.

In addition, the format of the stored 3D and analog data as floating point or signed
integer values can be deduced by reading the header SCALE value. This is a positive
floating-point number used to convert the signed integer 3D point values into real-
world values. If the header SCALE value is negative then the 3D and analog data is
always stored in floating-point format.

The C3D File Format User Guide The Header Section • 31

The basic function of the C3D header section is to provide a means for software
application to retrieve basic information about the data contained in the file without
the need to read and decode the parameter section. Of necessity, the first word must
contain a pointer to the location of the parameter section (byte-1) and a means for
software applications to verify that the file is actually a C3D file. In most cases, the
C3D parameter section can be found immediately after the C3D header record
section while the 3D/analog storage area will normally be found within a few blocks
of the end of the parameter section, however, these locations should not be assumed.

Description
The C3D header section is always the first block in the C3D file and is counted as
block number one (1). It is a single record of 256 16-bit words (512 8-bit bytes) with
the following structure:

WORD Typical Value Description
1 0x5002 hex Byte 1: Points to the first block of the parameter section.

Byte 2: Key value 0x50h indicating a C3D file.

2 nn Number of 3D points in the C3D file (i.e. the number of
stored trajectories).

3 nn Total number of analog measurements per 3D frame, i.e.
number of channels multiplied by the samples per channel.

4 1 Number of the first frame of 3D data (1 based, not 0).

5 nn Number of the last frame of 3D data.

6 10 Maximum interpolation gap in 3D frames.

7 – 8 nnnn The 3D scale factor (floating-point) that converts signed
integer 3D data to reference system measurement units. If
this is negative then the file is scaled in floating-point.

9 nn DATA_START – the number of the first block of the 3D
and analog data section.

10 nn The number of analog samples per 3D frame.

11 – 12 60.000 The 3D frame rate in Hz (floating-point).

13 – 147 0x00 hex Reserved for future use.

148 0x3039 hex A key value (12345 decimal) is written here if Label and
Range data is present, otherwise write 0x00.

149 nn The first block of the Label and Range section (if present).

150 0x3039 hex A key value (12345 decimal) present if this file supports 4
char event labels. An older format supported only 2
character labels.

151 0 Number of defined time events (0 to 18)

152 0x00 hex Reserved for future use.

153 – 188 - Event times (floating-point) in seconds (up to 18 events).

189 – 197 - 18 bytes - event display flags 0x00 = ON, 0x01 = OFF.

198 0x00 hex Reserved for future use.

199 – 234 - Event labels. Each label is 4 characters long

235 – 256 0x00 hex Reserved for future use.

Figure 3 – The C3D file header record.

32 • The Header Section The C3D File Format User Guide

The first word in the C3D header record contains two bytes. The first byte is a
pointer to the first 512-byte block that starts the parameter section – in the example
shown below this is 0x02h indicating that the block immediately following the
header record is the start of the parameter section (the header record is block 1). The
second byte is always 0x50h (80 decimal) and flags this file as a C3D file.

Copied from the parameter
section, this value can be
easily accessed by any
software application.

The second word in the C3D file header contains the number of trajectories stored in
the file as 3D points – this is a copy of the POINT:USED parameter (see page for
details)

71
. Note that the C3D file structure can easily accommodate data records that

contain 3D information, 2D information or no coordinate information at all.

The third word in the C3D file header contains the number of analog samples stored
for each frame of data in the file – each sample consists of at least one 16-bit data
value per 3D frame. Note that there is no requirement that the stored data has 16-bit
resolution, in fact many C3D files contain only 12-bit resolution data although all
analog values are stored as 16-bit values regardless of their physical sample
resolution. See page 64 for a discussion of the format of the stored analog data.

Figure 4 – A hex dump of a typical C3D header record.

Signed C3D files limit the
maximum number of 3D
frames to 32,767 while
Unsigned C3D files
support and maximum of
65,537 3D frames.

The 3D point frame range is stored in the next two header words in the form of
first_frame_number, last_frame_number. The frame numbers are a 1-based count –
there is no frame zero. Although many C3D files store data in the range of 1 to n,
there is no requirement that the first frame is frame 1, e.g. C3D files containing
exactly 100 frame could have ranges such as 1 – 100, 23 – 122, 2005 – 2104 etc.
The 3D point frame range is one of the few data values stored in the C3D file header
section that is not derived directly from the parameter section.

Header word six contains a value that records the maximum interpolation gap length
for 3D point data. The use of this item is not specified in the C3D file description
although the maximum interpolation gap length value is usually set to indicate the
maximum length of invalid 3D point data samples (in frames) over which

The C3D File Format User Guide The Header Section • 33

interpolation was performed in the creation of the C3D file. This may be used by
various applications to specify the length of gaps that can be interpolated or gap
filled when reading or creating a C3D file. Since the value of the maximum
interpolation gap is recorded in 3D frames, it represents time. Note that since this
value is not well defined in the C3D file specification, its use does not indicate that
any 3D data points are actually interpolated – the precise interpretation of this value
is left up to the application that created the data. Any application reading the C3D
file may, if necessary or requested, override this value and interpolate gaps of any
length.

The C3D header contains a
copy of the POINT:SCALE
parameter - see page 72.

Words 7 and 8 in the C3D file header contain a copy of the 3D scale factor stored as
a floating-point value. This parameter is used when 3D data values are stored using
signed integer format. It scales the stored 3D point values from signed integer values
to real world values.

The sign of the 3D scale factor can be used to determine the 3D point and analog
data storage method (floating-point or signed integer). If a signed integer C3D file is
converted to floating point format then the original 3D scale factor should be simply
negated and stored – this allows transparent conversion between signed integer and
floating-point data types unless the floating-point data is modified in some way.

To retain the maximum resolution for signed integer data, the 3D scale factor should
be about (max absolute coordinate value used)/32000. This will allow all of the 3D
point coordinates to be expressed within the range of a signed 16-bit integer value.

Header word 9 is a copy of
the POINT:DATA_START
parameter – see page 72
for details.

Header word 9 is a copy of the DATA_START parameter – this is a pointer to the first
512-byte block that starts the 3D point and analog data section. The 512-byte blocks
are counted from the start of the C3D file with the 512-byte C3D header section
counted as block 1. It should not be assumed that the 3D point and analog data
section starts immediately following the C3D parameter section.

T

The use of a signed integer here (Signed C3D files) will limit the maximum value of
DATA_START to 32,767. The use of an unsigned value extends this value to a
maximum of 65,536 thus enabling the 3D data to be stored further from the start of
the C3D file.

Header word 10 records the number of analog samples associated with each 3D
frame. If the C3D file does not contain any analog data then this will be zero. If the
C3D file does contains analog data then it will be interleaved with the 3D data to
ensure that synchronization is maintained between the 3D and analog samples. The
C3D structure for 3D point and analog data samples assumes that each 3D frame can
have one or more analog samples from each channel sampled (as determined by the
count stored in the third word of the C3D file header). Thus the actual analog
sample rate is measured and recorded in terms of analog samples per 3D frame – this
means that C3D files can only contain data sampled at integer multiples of the 3D
frame rate.

The physical analog
channel count, and analog
sample rate per channel,
must be calculated from the
information stored in the
header, as these values are
not stored individually.

This is the POINT:RATE
parameter (see page for
details) and is copied to the
C3D file header for easy
access by other software
applications.

72

Header words 11 and 12 record the 3D frame rate in samples per second – commonly
thought of as Hertz (Hz.). Note that the 3D frame rate parameter is a floating-point
value, making it possible to accurately record the 3D frame rate for video based
sampling systems. For instance most 60 Hz video based systems actually sample the
video data at which, while close to the commonly assumed exact 59.94 Hz 60.00 Hz
sample rate, can introduce measurable synchronization errors over periods of tens of
seconds. Not withstanding this, some motion capture systems incorrectly record the
value of “60” in these circumstances.

C3D file header words 13 – 149 are reserved for future use. At this point, a proposal
has been made to use words 148 and 149 to define the proposed Label and Range
section. Other header words may provide additional expansion features in the future.
Applications that create new C3D files should fill these reserved words with 0x00h

34 • The Header Section The C3D File Format User Guide

while applications that copy or edit C3D files should preserve the contents of these
words.

Header words 150 and 151 in the C3D file header are used by the header event
storage feature which is explained in more detail on page 35. The header event
storage allows the timing of a maximum of 18 events to be recorded in the C3D file
header section. Header word 151 records the number of events stored in the C3D
header – this can be any signed integer value between 0 and 18. Words 153 through
234 are used to store up to 18 event times together with a four-character label and a
status (either ON or OFF) for each defined event. Events defined in the header may
be used for any purpose although in gait analysis they are typically used to indicate
gait cycle timing. Words 152 and 198 are unused.

The remaining C3D header section words 235 through 256 are reserved for future
use. Applications that create new C3D files should fill these reserved words with
0x00h while applications that copy or edit C3D files should preserve the contents of
these words.

It is very important to ensure that all C3D software applications use the correct
pointers to locate the various headers and data sections, as there is no guarantee that
data and parameter sections will always be organized in exactly the same way. An
application that, for example, assumes that 3D data always follows the parameter
section, or that the parameter section will never be larger than 10 blocks, may fail
unexpectedly when presented with a valid C3D file that has been created by another
software application.

Failure to read or write the
C3D pointers correctly is
the number one cause of
software problems. False
assumptions about the C3D
file structure are the other
major cause of problems!

Header events
Header events are used as a general way of designating significant times in a C3D
file (e.g., initiation and/or termination of foot-floor contact – commonly called heel-
contact and toe-off in a gait cycle). Each stored event is identified by a one to four
character event label (e.g. RHS, RTO), and has an associated event time in seconds
relative to the first sample (designated as 0.0s) of the C3D file.

Each event has an on/off
status flag that can be used
to control the display of the
event position when the
C3D file is processed.

A maximum of eighteen (18) of these events can be stored in the C3D header record:

WORD Typical Value Description
150 0x3039 hex A key value (12345 decimal) present if this file supports 4

char event labels. An older format supported only 2
character labels.

151 0 The number of time events present (0 to 18)

152 0x00 hex Reserved for future use.

153 – 188 - Event times (floating-point) in seconds (up to 18 events).

189 – 197 - Event display flags 0=ON, 1=OFF.

198 0x00 hex Reserved for future use.

199 – 234 - Event labels. Each label is 4 characters long

Figure 5 – The C3D header record EVENT storage format.

Header word 150 in the C3D file header is used as a key value (0x3039h – 12345
decimal) that indicates that the C3D file supports event labels containing up to four
characters - an older format supported only two characters per label. The presence of
the key word only indicates that the C3D file supports labels with four characters – it
does not indicate that any events are actually stored. This is done by header word
151, which records the number of events stored in the C3D header. This can be any

The C3D File Format User Guide The Header Section • 35

signed integer value between 0 and 18 with a value of 1 to 18 indicating that events
are present. C3D header words 152 and 198 in this block of data are unused.

Figure 6 – A hex dump of a C3D header that contains eight events.

The C3D header events are stored as a list that can be indexed directly by the event
count stored in header word 151. Events are always added to the end of the list – if
one or more events are deleted from the middle of the list then all higher index
events (together with their labels and status flags) are moved down to fill the empty
space. Events may be stored in the list in any order so long as the event time, event
label and event status are indexed correctly by the event count in header word 151.

Event times
Header words 153 through 188 stores up to 18 event times in floating point format.
Each event time is recorded as the number of seconds and fractions of a second that
have elapsed since the first sample (designated as 0.0s) of data recorded in the C3D
file.

The event times are stored
in the order in which they
are created and may not
have any logical order.

For example, an event time of 1.05 seconds indicates that the event was recorded
1.05 seconds after the first frame of data as recorded in the C3D file header word 4.
It does not matter what frame number is recorded as the first frame – the event
occurred 1.05 seconds later. Thus if the 3D data rate is 50Hz and the first frame
number is 51 (one second) then the event occurred after 1.05 seconds of recorded
data or 2.05 seconds after frame #1 (which is not recorded in this example).

Recorded event times must
always occur within the
period first-frame to last-
frame period defined by the
C3D header words 4 and 5.

Event status
Words 189 to 197 contain flags that indicate the status of each event. Each word
contains two byte-sized flags stored in the same order as the event times. The byte-
flags are set to 0x01h if the event status is ON and 0x00h if the event is OFF.

The on/off status of the event may be interpreted in any convenient way – in general,
applications that graph or otherwise display data will indicate the presence of an
event if the status is ON and will hide the event if the status is OFF. However there
is no formal convention for the interpretation or use of the event status. Events are
valid within the C3D file regardless of their actual status.

Note that header word 198,
immediately following the
event flags, is unused.

Event labels
A unique four-character label using the characters A-Z, a-z, 0-9, and space can be
assigned to identify each event. Labels shorter than four characters must be filled to
four characters by adding spaces (ASCII 0x20h, 32 decimal) to the end of the label.
The event labels are stored in the same sequence as the event times and status flags.

Event labels should always
use ASCII upper case
characters (a-Z, 0-9 and
space) for compatibility
with older FORTRAN
programs.

36 • The Header Section The C3D File Format User Guide

Event interpretation
The C3D format does not specify the meaning or interpretation of the events stored
in the header section although the original intent of this feature was to allow a small
number of human gait related event times to be recorded by any application. As a
result, C3D file may contain a varied number of events and labels.

When used to record gait events the header section can record a maximum of four
gait cycles per side (left/right). While this is generally sufficient for most gait
applications, other C3D file users, such as for analog EMG recordings or the
entertainment industry, have required more event storage than the C3D header can
provide. This has lead to the development of alternative event storage mechanisms
such as the Label and Range section described on page 118 as well as some
manufacturer specific implementations.

Notes for Programmers – C3D Header
1. The C3D header section does not provide any information about the storage

format used for floating-point and signed integer numbers. There exist
three floating-point representations – DEC, SGI/MIPS, and Intel, and two
signed integer representations – big endian and little endian, reflecting
which order bytes are stored in memory. Both the DEC and Intel
processors use the little endian method where the lowest bytes are stored
first in memory. The number structure information can be retrieved from
the parameter header record at the start of the parameter section.

2. In general, the data in the C3D file header section should be either
considered a direct copy, or derived from, the values stored in the parameter
section of the C3D file. Applications should, in general, always attempt to
read the parameter section values directly and should consider them the
master records that can always be trusted.

3. The C3D header structure contains a pointer in the first word of the file that
locates the start of the C3D parameter section. Always use the header
pointer to locate the start of the parameter section and then, whenever
possible, use the parameter values in the parameter section to locate other
sections within the C3D file.

4. The C3D format specifies that the location of the first 3D data section
record will be read from the POINT:DATA_START value in the C3D
parameter section. The reason that the value of DATA_START, as well as
other parameters, is repeated in the header of the C3D file is to allow any
basic utility to access the 3D data without having to read and decode the
parameter section.

5. Applications that create C3D files must always ensure that the C3D header
section contains the identical copies of those values that are also stored in
the parameter section (e.g., POINT:DATA_START, POINT:RATE,
ANALOG:RATE etc). A C3D file may have become corrupted if there is a
discrepancy between header record and parameter section values for the
same items. Software applications should be prepared to handle corrupted
C3D files that contain either mismatched header and parameter information
or parameter records that do not contain the correct pointers to the start of
the 3D data section.

6. Software applications should always preserve the values of header words
marked “reserved for future use” whenever a C3D file is rewritten. This
will result in applications that are “friendly” towards any future extensions
to the C3D file format that modify the header.

The C3D File Format User Guide The Header Section • 37

The Parameter Section

Overview
All C3D files contain a parameter section that stores information about the 3D and/or
analog data stored within the C3D file. These parameters should provide all the
information that a software application needs to access and process the data
contained within the C3D file. In order to understand the parameter section within a
C3D file it may be useful to see the C3D file format from the historical context as a
particular implementation of a more general ADTech format specification. The
general ADTech specification covers a family of file formats and specifies that the
first word of the file will contains a pointer to the parameter section. The parameter
section can contain pointers to any number of data sections in the file, together with
their starting record locations.

A single 512 byte header section

A parameter section consisting of one or more 512-byte blocks.

3D point/analog data section consisting of one or more 512-byte blocks.

Figure 7 – The parameter section within the C3D file structure.

Although the C3D file header provides access to some basic information about the
contents of a C3D file (number of 3D points, analog channels and sample rates etc),
it is the parameters within the parameter section of the file that store the details that
make the contents of the file intelligible. For instance, the C3D header may tell you
that the file contains 50 frames of data, each containing 20 3D points – however, it is
the parameters that tell you that the 10th point in each frame is labeled “LTHI” and is
the “Left Thigh Wand Marker”.

Without the parameter section, a C3D file is just a collection of data samples, stored
in the file in yet another data format. It is the structure of the parameter section, and
its flexibility, that makes the C3D file format so adaptable and functional, regardless
of the source of the data.

Within the parameter section, a name and a data type identify each stored parameter.
A parameter may have dimensions, which describe how many pieces or elements of
data it can hold. Each parameter can also have a description associated with it.
While the C3D file requires some specific information to be present as parameters,
any user may create additional parameters to store any relevant information. Any
other C3D compatible application can automatically read this information making it
easy to preserve almost any data-related information.

The C3D File Format User Guide The Parameter Section • 39

Related parameters (for instance, a collection of parameters containing information
about the analog data in a C3D file) are organized into “groups” - each parameter
within a C3D file belongs to a particular parameter group. Each parameter group has
a unique group name and may have a group description associated with it.

In listings and commands, the group name and parameter name are separated by a
colon (:) so that the parameter “SCALE” that belongs to the “ANALOG” group will be
written as ANALOG:SCALE – the group name always precedes the parameter name.
The ability to group parameters in this way enables similar parameters pertaining to
different functions to be included in the same file without risk of confusion. Thus,
the SCALE parameter ANALOG:SCALE is different from the parameter POINT:SCALE.

A parameter or group name may consist of any number of characters made up from
the letters A through Z, the numerals 0 through 9, and the underscore character “_”,
other punctuation or printable characters may not be used. Parameter and group
names should not start with a numeral or the underscore character. While lower case
letters are usually tolerated in parameters and group names, it is standard practice to
use upper case letters throughout the name.

By a suitable choice of
group and parameter
names and descriptions, it
is possible to make the
parameter functions
largely self-explanatory.

For compatibility between software applications, the C3D specification states that
when a parameter or group name is interpreted then only the first six characters of
the group name and the first six characters of the parameter name are used.
Therefore, it is important that all group names, and all parameter names within the
group, should show at least one difference in the first six characters. The same
names may be used for two parameters if they occur in different groups.

A parameter’s type determines the type of data that may be stored in it. Four
parameter types are used; integer, floating-point, character, and byte. These data
types correspond to the conventional meaning of the terms in computer
programming. An integer is a 16-bit signed number between

Signed C3D files treat all
integer and byte data,
without exception, as
signed numbers that may
contain both positive and
negative values.

-32768 and +32767, a
floating-point number is one containing a decimal point or written in scientific
exponential representation. A character is a literal symbol such as a letter entered
from the keyboard, and a byte data location can contain an 8-bit signed integer in the
range -128 to +127.

 to An unsigned, 16-bit, integer can store positive numbers in the range of 0 +65535
while unsigned bytes have a range of to 0 +255. Unsigned integers lack any way of
recording the sign of a number and so, by convention, are assumed to be positive
values. This ability to represent larger numbers makes the use of unsigned numbers
attractive within some C3D file parameters where we are confident that the values
represented will never be negative. As a result, some software applications may treat
certain parameters as unsigned – thus allowing them to store larger frames or longer
parameters. C3D files that contain unsigned integers are referred to as Unsigned
C3D files.

It must be stressed that, other than the convention of treating a particular order of 16-
bits as a positive or negative value, there is no discernable difference in the way that
the C3D file is written. The only way of determining that a C3D file is unsigned is
by examining the values of various parameters for negative values in places that
would make no sense in a signed C3D file – for instance, reading an array index with
a negative value is a sure giveaway as is reading a negative frame range!

Unsigned C3D files will
contain both unsigned and
signed data in the
parameter section.

The dimensions of a parameter define how many elements of the appropriate type
may be stored in that parameter – as a result, dimensions are always positive values.

The original signed C3D specification allowed for a maximum of seven dimensions.
Some older applications may fail to read more than seven dimensions, if present in a
C3D file.

40 • The Parameter Section The C3D File Format User Guide

The use of the term dimensions follows normal programming conventions - if a
parameter has no dimensions, then it may only hold one value of its data type. If it
has one dimension it is presented in the form such as PARM(4) where the 4 indicates
that the parameter called PARM is capable of holding four values. Examples of two-
and three-dimensional parameter arrays are PARMA(4,5) and PARMB(3,5,7). The first
example has 4 x 5 = 20 elements, and the second parameter holds 3 x 5 x 7 = 105
entries.

Parameter header
The C3D file header contains a pointer (Word 1) to the first block of the parameter
section in the C3D file. The pointer is a byte value that indicates the 512-byte block
number of the first block of the parameter section counting the C3D header as block
one. The first four bytes of the parameter section contain the following parameter
record header:

Byte Typical Value Description
1 0x00 hex Reserved for parameter file use.

2 0x00 hex Reserved for parameter file use.

3 Nn Number of parameter blocks to follow (see below).

4 85 83 decimal + processor type.
 Processor type 1 = Intel
 Processor type 2 = DEC (VAX, PDP-11)
 Processor type 3 = MIPS processor (SGI/MIPS)

Figure 8 – The parameter section header in a C3D file.

The first two bytes of the parameter record are only meaningful if they also form the
first word of the file – this is because the more general ADTech file format requires
the first byte of a file to point to the first parameter block and the second byte to
contain decimal 80. Hence, these two bytes are always ignored in C3D files.

Although not required, it is a good idea to preserve the values of these two bytes
when reading and re-writing C3D files in order to maintain compatibility with some
older software applications that may not be fully C3D compliant and may expect to
find parameter file values in these locations. This is because one common technique
for creating C3D files used to be to maintain a parameter “template” as a separate
file – an application could then simply create a header block and append the
parameter file and data. This technique resulted in the parameter section containing
non-zero bytes in the first word, which casual programmers assumed (incorrectly)
were valid flags or pointers.

Figure 9 – A hex dump of a parameter section header record with an invalid first word.

The third byte of the parameter header contains a count of the number of 512-byte
blocks within the parameter section, counting the first block that contains the

Parameter data is stored in
contiguous 512-byte blocks

The C3D File Format User Guide The Parameter Section • 41

Parameters may cross
block boundaries within the
parameter section.

parameter header record as block 1. This effectively sets the size of the parameter
section storage allocation within the C3D file. In the example shown the parameter
section occupies nine 512-byte blocks.

Although it is not explicitly stated in the original C3D format description, it may be
assumed that the third byte is interpreted as an unsigned byte value with a range of 0
to 255. This allows C3D files to contain up to 127.5kB of data in the parameter
section.

The inclusion of the For compatibility, all C3D
compliant applications
should be written to handle
supported number formats
transparently.

processor type as byte four of the parameter header enables any
program accessing the parameter and data files to determine the internal format of
the floating-point numbers and signed integer numbers within the C3D file. Note
that there is no requirement to use any specific number format so long as the correct
format is indicated in the parameter header at the start of the parameter section and is
used throughout the C3D file. The example shown has a processor type of 0x55h (85
decimal) indicating that the DEC internal number conventions are used within this
file. A fully compliant C3D application should be able to handle all number formats.
Typically, the number format will be determined by the computer that writes the file,
but it is not difficult to translate all numbers to another number structure format on
file output.

It is probably worth noting at this point that while the ability to store data in both
floating point and integer format is useful, most software applications should
probably choose one processor type format as default. Most new applications appear
to use Intel (processor type 1) but also read DEC and MIPS for compatibility with
other manufacturers. As a rule, integer files are half the size of their floating-point
counterparts and are usually faster to open and perform read/write operations.
However, floating point files offer the ability to store a greater range of data values
which is significant when analog data is filtered or otherwise processed.

Notes for Programmers - Parameters
1. Parameter records are stored contiguously within the parameter section and

start immediately following the parameter header. Parameter records may
overlap 512 byte block boundaries. The parameter section will always
occupy a whole number of 512 byte blocks – space between the end of the
parameter records and the end of the parameter section should be cleared
(filled with 0x00h). Some non-compliant applications may expect the
parameter section to contain a final 512-byte block that contains the value
0x00h.

2. The parameters are organized into groups – each parameter is a member of
a single group.

3. Parameter names within a group must be unique so that applications can
search for specific parameters by name. Parameter names may be reused so
long as they are in different groups – thus the two RATE parameters,
POINT:RATE and ANALOG:RATE are unique and can be read without
confusion.

4. The first two bytes of the parameter header record are only meaningful
when the parameter section starts at the beginning of the file (as in ADTech
parameter files), but some C3D software applications may (erroneously)
expect them to be set to the values that they would have in a parameter file.
Applications that access C3D files should maintain these values for
compatibility with older non-compliant applications.

5. The actual parameter data starts at byte 5 of the first block of the parameter
section.

42 • The Parameter Section The C3D File Format User Guide

6. Although it is not required, parameter and group names are generally
UPPER CASE and are written as GROUP:PARAMETER to avoid confusion,
e.g. ANALOG:SCALE. All parameter and group names should be case
insensitive in reading and writing – it is recommended that all group names
are converted to upper case when they are read to ensure that parameter
matches are not sensitive to case.

7. Group identifiers and parameters may appear in any order in the file.

8. It is not uncommon for applications to create, modify and/or delete
parameters from the parameter section. The C3D format does not require
that parameter deletion be done in any particular order. As a result,
programs that read the parameter section should not assume that the
contents are in any particular order and it is quite possible for parameters to
be listed earlier in the parameter section than the group names to which they
belong.

9. The original, ASCII text, C3D specification contained a description of a
C3D file that stated that the parameter section started at the second block in
the file. While this was accurate for the C3D file example used in the
original specification, this has caused some programmers to assume that the
parameter section can always be found starting at the second block in the
C3D file – this is incorrect. It is very important to note that the C3D file
parameter section always starts at the location pointed to by the byte pointer
in the first word of the C3D file header.

10. The pointer-based structure of the C3D parameter block makes it very easy
to scan through the parameters to catalog their structure without any
requirement to decode the individual parameter values.

C3D Parameter Files
This chapter describes a feature of the ADTech file format in that any such file can
contain parameters and/or data and, as long as the file has a parameter section, it can
be used as a source of parameters by any another application. As a result, the title
“Parameter Files” is somewhat misleading - in fact, all C3D files are potentially
“Parameter Files.” This manual will use the term Parameter Files to refer to any file
that contains only a parameter section without any 3D data section, although it could
contain other data sections.

Anyone reading this manual simply to learn how to store 3D and/or analog data in a
C3D file can comfortably skip this chapter and move directly to the discussion of the
C3D Group and Parameter format in the following chapter.

The parameter section from a C3D file may be stored as a separate file within the
general ADTech format. This feature allows collections of parameter values to be
maintained and manipulated, and is useful if you have to describe a wide range of
data collection configurations or analysis conditions. These parameter files do not
contain a C3D file header section or any 3D or analog data section but are simply
the parameter section from a C3D file, written to a separate file with a different
modified parameter header record. This feature is convenient for maintaining
collections of parameters.

Parameters may be
extracted from any file
adhering to the ADTech
format and used as a
“template” for adding a
complex set of parameters
to C3D files.

The convenience of parameter files is best illustrated with some practical examples:

• A photogrammetry application generally needs to create a number of
C3D files for each experiment or data collection session. In most cases
the data collection parameters do not change within data trials in a
single data acquisition session – therefore the majority of the C3D

The C3D File Format User Guide The Parameter Section • 43

parameters will be identical in each trial and therefore each C3D file.
While it is possible to write an application that creates a set of identical
parameters each time it writes a C3D file it is usually faster, using a
small parameter file as a template, to simply copy the parameter details
from the template file and update the few parameters that have actually
changed in the new C3D file.

• A data analysis application that reads and writes C3D files will usually
be required to process data collected in a number of different
environments or experimental conditions. Software users do not
generally appreciate having to set up a standard set of conditions
repeatedly so it is common for software applications to offer the ability
to save various configurations. It is easy to create C3D parameter files
that contain various sets of configuration information (i.e. specific
analog channel names and descriptions) and then use this information
to update C3D data files during analysis.

• Programmers writing their first application to create C3D files from
scratch will usually find it easier to simply copy the parameter section
from an existing C3D file than write code to build the C3D parameter
structure.

• Parameter files are a convenient alternative to the conventional ASCII
text .INI or .DAT files for storing C3D related values since they can be
accessed via the same sub-routines and functions used by C3D files. A
numeric or text data value can be read from a parameter file and written
directly into a C3D file without any conversion – making transcription
and interpretation errors unlikely.

• Any C3D file can serve as a “parameter file” in that its parameter
section can be read and used as a “template” for creating or modifying
other C3D files.

In each of these examples, the parameter file offers a convenient way of storing C3D
parameters for eventual use in other C3D files. In practice of course, any application
that knows how to read C3D parameters can extract this information from any C3D
file. The advantage of creating parameter files to store common information is
simply one of convenience.

Parameter files always start with single 16-bit word that contains two byte values:

Byte Typical Value Description
1 0x01 hex The block number of the first block in the parameter section.

2 0x50 hex Key identifier of 80 decimal.

Figure 10 – The Parameter File.

The first byte of the parameter file is a pointer to the parameter block while the
second byte is a key byte that flags the file as using the ADTech format. Thus,
parameter files do not have a C3D-like header – instead the first byte indicates the
number of the first block of data within the parameter file that contains parameter
information. This will usually 0x01h, indicating that the parameter information
starts at the first block in the file. A value of 0x08h would indicate that the
parameter information started in block 8 in the file.

The first byte of the
parameter file is an
unsigned byte pointer to
the start of the files’
parameter section.

The second byte is a key byte – the value of 80 decimal (0x50h) indicating that this is
an ADTech format file. The function of this is to allow an application to quickly test
if the file is indeed a file written in the ADTech parameter format. It is worth

44 • The Parameter Section The C3D File Format User Guide

pointing out that the format of the first word in a parameter file is identical to that of
the first word in a C3D file.

Notes for programmers – Parameter Files
1. The first word of a parameter file has the same format of the first word in a

C3D file.

2. The format of the parameter section of a parameter file is identical to that of
a C3D file except for the first byte of the section.

3. Parameter data values are stored contiguously within the parameter file and
may overlap 512 byte block boundaries. The parameter section will always
occupy a whole number of 512 byte blocks – space between the end of the
parameter records and the end of the parameter section should be cleared
(filled with 0x00h).

4. Do not assume that the pointer in the first word of the parameter file will be
0x01h. Always read the pointer to determine the start of the parameter
section. There is no requirement in the description that the parameter
section starts at the first block of the file.

5. Spell group and parameter names correctly – a software application that
expects to read data from a parameter called FORCE_PLATFORM may fail if
the parameter has been spelt incorrectly as FORCE_PLATEFORM and the
software searches for the entire parameter name rather than just the first six
characters.

6. Parameters are organized into groups – each parameter is a member of a
single group such that the parameter SCALE in the ANALOG group is distinct
and separate from the parameter SCALE in the POINT group.

7. Although it is not required, parameter and group names are generally
UPPER CASE and are written as GROUP:PARAMETER to avoid confusion,
e.g. ANALOG:SCALE. All parameter and group names should be case
insensitive in reading and writing – it is recommended that all parameter
names are converted to upper case when they are read to ensure that
parameter matches are not sensitive the case.

8. A negative group number in the group header is normal – see page 47.

9. Parameters indicate which group they belong to by a positive group number
in the parameter header.

10. Traditionally, all integers in a parameter file are signed integers with a
range of –32768 to +32767 and all bytes are signed bytes with a range of –
128 to +127. However, imposes some limits of the size of various
parameters and as a result some parameters may use unsigned integers.
Unfortunately, there is no flag to indicate that a parameter file uses
unsigned integers. The use of unsigned integers can only be determined by
finding negative values in certain parameter, pointer or index values. For
example, reading a negative array index is a clear indicator that unsigned
integers are being used.

11. Group identifiers and parameters may appear in any order in the file.

12. It should be assumed that the previous comments made about the
organization of parameter data within the C3D parameter section also apply
to the parameter file. It is not uncommon for applications to create, modify,
and/or delete parameters from the parameter section. The parameter file
format does not require that parameter deletion be done in any particular

The C3D File Format User Guide The Parameter Section • 45

order. As a result, programs that read the parameter files should not assume
that the contents would be in any particular order.

13. The same formats are used to store parameter information in both the C3D
file parameter section and the individual parameter file.

Group and Parameter Formats
It is useful at this point to review the concepts behind groups and parameters within
the C3D file. Information that describes the data within the C3D file, or the data
collection environment, is stored in the file as “parameters.” Since many of these
items are related (e.g. the number of 3D points, their labels used to identify them and
their associated descriptions) they are gathered together in “groups.” This concept
allows us to have a simple, easy to remember, name for a parameter and then use the
name in several different places. Thus, the parameter name USED represents the
number of 3D points in a C3D file as well as the number of analog channels. The
two parameters are assigned to their own groups and referred to as and POINT:USED

 to avoid confusion. ANALOG:USED

While there is a minimum set of parameter information required to process or simply
read a C3D file, the parameter and group concept is very flexible and allows anyone
to create both groups and parameters and then use them to store information. This
information is then available to any other application that reads the C3D file. This
capability can be very useful – for instance, a software application might analyze the
3D data and force plate data within the C3D file and determine various gait related
parameters such as the average stride length, step length, and cadence etc. This
information can be recorded in the C3D file, together with other information such as
the subjects weight, height, and date of birth. The next time that the application
opens the C3D file, it will be able to read this information without requiring any
recalculation. In addition, other applications will also be able to share this
information and add to it or use it in their own analyses.

Before we discuss the details of the Group and Parameter formats it is useful to
understand the logic by many applications that results in the apparent random
assignment of group/parameter numbers, and the random ordering of parameters
within the parameter section. Many applications read the entire parameter section
into memory as a single vector. To find a parameter within the parameter section,
the vector is searched sequentially for the parameter’s group name, which then yields
the group ID number. The vector is then searched again from the beginning for
parameters belonging to the appropriate group ID and having the require name. The
parameter’s data can then be accessed.

If a parameter or group is added to the parameter section then the new item will
usually be appended after the last entry. If a parameter is deleted, it is first located
and then all of its contents are packed out of the vector. This approach provides
much flexibility, but means that the order of groups and parameters within the
section will finish up being quite random. When writing out the parameter section,
the total vector will be written – while this ensures that all parameters that were read
in, but were not changed, will be written out accurately, it means that in practice the
order in which parameters are found within the parameter section will be random.

All information stored in a parameter section is organized into groups even though
related items may be stored in widely separated areas of the parameter section. A
group is simply a collection of related parameters. Each parameter is a member of a
single group thus allowing two parameters to have the same name if they belong to
different groups.

46 • The Parameter Section The C3D File Format User Guide

For instance, there may be two parameters called SCALE – one SCALE parameter
applies to 3D data while the other SCALE parameter applies to analog data. The two
parameters are stored in separate groups called POINT and ANALOG. Thus, the 3D
parameter can be referenced as POINT:SCALE while the analog value can be read
from the ANALOG:SCALE parameter.

Note that although the formats used to store group and parameter values are similar,
the two data types provide quite different functionality within the C3D file and
should not be confused. Applications are free to create their own group and
parameter values within any C3D file provided that they conform to the basic rules.

Group Format
The first byte of a group record stores the number of characters in the group name.
Group names can have from 1 to 127 characters (using the character sets A-Z, a-z,
and 0-9) although four characters should generally be considered a minimum. It is
recommended that the first six characters of each group name are unique for
compatibility with many older software applications. The character count is always
read as a positive number regardless of the actual sign of the stored value.

Byte Length (bytes) Description
1 1 Number of characters in the Group name (1-127) – this

value may be set to a negative number to indicate that the
group is “locked.”

2 1 Group ID number (-1 to –127 … always negative).

3 N Group name (ASCII characters – upper case A-Z, 0-9 and
underscore _ only)

A signed integer offset in bytes pointing to the start of the
next group/parameter.

3 + n 2

3 + n + 2 1 Number of characters in the Group description.

3 + n + 3 M Group description (ASCII characters – mixed case).

Figure 11 – The format of a Group Parameter.

The second byte of the group record contains the group ID number – this is always a
negative value between –1 and –127 (hence it must be read as a signed byte) and is
used to link parameters to their groups. A parameter with a positive ID value that
matches a negative group ID number “belongs” to that group. Note that the actual
value chosen for a group ID number is not fixed and may vary from one C3D file to
another. It is not required that group ID numbers are assigned in a contiguous
sequence. In the example shown the group ID number is 0xFFh, which translates to
255 decimal or –1 (signed integer), thus all parameters with a parameter ID of 0x01
will belong to this group.

The string containing the group name starts at the third byte. Group names can have
from 1 to 127 characters (using the character sets A-Z and 0-9) although four (4)
characters should generally be considered a minimum. Group names should not start
with a number. The hex dump below shows the format for the

The first six characters of
each group name must be
unique and use only upper
case, numeric or
underscore characters.

POINT group record
with a description where the characters are stored (in hex) as POINT 0x50, 0x4F,
0x49, 0x4E, and 0x54.

The C3D File Format User Guide The Parameter Section • 47

Figure 12 – A typical Group record – this example defines the POINT group.

A “POINT” group, arbitrarily assigned the ID number –1, and with no description
would be stored in 10 bytes as follows (values shown in hex):

0x05h 0xFFh 0x50h 0x4Fh 0x49h 0x4Eh 0x54h 0x03h 0x00h 0x00h

5 -1 P O I N T 3 0

Figure 13 – A simple group record with no description string.

A word pointer to the next parameter data structure follows the group name string
unless this is the last parameter in the parameter section. The last parameter in the
parameter section always has a pointer value of 0x0000h to indicate that there are no
more parameters following. In the example shown here, the pointer has the value
0x0017h, indicating that the next parameter record starts in 23 bytes while the group
has no description string (not a good idea) and therefore has a pointer of 0x0003h.

A single byte follows the pointer to the next parameter data structure – this records
the length of the group description string (0-127 characters) that immediately follows
this byte. The group description can contain mixed case characters as well as space
characters and is generally used to provide a human-readable description of the
group function. In the first example the description length is 0x14h – the group
description 3-D point parameters contains 20 characters, while the second example
has no description string and thus a description length of 0x00h.

The next parameter or group record in the parameter section starts immediately
following the previous records’ description string. From the example above, it can
be seen that the following record name is six characters long and has a group ID of
0xFEh. This is another group record that describes a different group name – in this
case, this is the record for the ANALOG group. You can work out the rest of the group
description for this parameter item and the following item from the example data.

Although the example above does not have any associated description it is strongly
recommended that the description string be used at all times to provide some basic
information about the parameter item and its use. Consider this as simply good
programming practice to provide some documentation about the information stored
in the C3D file.

While the function of any
given parameter may
appear to be obvious when
it is created, this may not
be the case ten years later.

Parameter Format
The first byte in the parameter record stores the number of characters in the
parameter name. Parameter names can have from 1 to 127 characters (using the
character sets A-Z, 0-9 and underscore) although four characters should generally be
considered a minimum. The first six characters of each parameter name must
unique. The character count is always used as a positive number regardless of the
actual sign of the stored value. In the example below the first byte is 0xF6h
indicating a locked parameter with a ten-character name.

A negative character count
is used to indicate that the
parameter is “locked” –
locked parameters should
not be changed, as their
values may be critical to
the integrity of the data.

Length Byte Description (bytes)

48 • The Parameter Section The C3D File Format User Guide

1 1 Number of characters in the Parameter name (1 to 127)
– this value may be set to a negative number to
indicate that the parameter is “locked.”

2 1 Group ID number (positive) to which the Parameter
belongs (+1 to +127).

3 N The parameter name (ASCII characters – normally
upper case numeric or underscore only)

A signed integer offset in bytes pointing to the start of
the next group/parameter.

3 + n 2

3 + n +2 1 Length in bytes of each data element
 -1 for character data
 1 for byte data
 2 for integer data (16-bit integers)
 4 for floating-point (REAL) data

Number of dimensions (0-7) of the parameter – 0 if the
parameter is scalar.

3 + n + 3 1

3 + n + 4 D Parameter dimensions.

3 + n + 4 + d T The parameter data.

3 + n + 4 + d + t 1 Number of characters in the parameter description

3 + n + 4 + d + t + 1 M Parameter description

Figure 14 – The Parameter format.

The locking mechanism was originally implemented to prevent casual users from
changing parameters using parameter examination and editing programs (such as
PRM and the C3Deditor). Its effectiveness depends on the degree to which locking
is supported by the currently available utility programs and the consistency with
which applications that create C3D files apply the locking property. The fact that a
parameter has been locked by one applications does not prevent any other
application from changing it – locking simply provides a flag that may be utilized by
other locking aware applications.

It is strongly recommended that applications do not allow users to change locked
parameters – applications that do permit the editing or modification of locked
parameters should include a method of restricting this feature to prevent the casual
user from corrupting C3D data files.

The second byte in the parameter header contains the parameter ID number – this is
always a positive value between +1 and +127 and is used to link the parameter to a
specific group. A parameter with a positive ID value that matches a negative group
ID number “belongs” to that group. Note that the actual value chosen for a group ID
number is not fixed and may vary from one C3D file to another. It is not required
that group ID numbers are assigned in a contiguous sequence. In the example below
the ID number is 0x01h – indicating that this parameter belongs to the group
described earlier, in fact this is the parameter POINT:DATA_START within this file.

Figure 15 – The DATA_START Parameter is locked and has a ten-character name.

The C3D File Format User Guide The Parameter Section • 49

The string containing the parameter name starts at the third byte in the parameter
record. Parameter names can have from 1 to 127 characters (using the character sets
A-Z, 0-9 and the underscore “_” character) although four (4) characters should
generally be considered a minimum. The first six characters of each parameter name
must be unique within its group for compatibility with many older software
applications.

A word pointer to the next parameter record structure follows the parameter name
string unless this is the last parameter in the parameter section. The last parameter in
the parameter section always has a pointer value of 0x0000h to indicate that there are
no more parameters following.

A single byte follows which describes the parameter type – character, byte, integer or
floating-point. Note that floating-point data can be stored using any one of three
different formats, which is usually determined by the hardware that originally
generated the C3D file. These are Intel, DEC, or MIPS formats. All floating-point
values in a given C3D file will use the same floating-point format as recorded in the
fourth byte of the parameter record header. Signed integer data can be stored in two
different ways (little endian for DEC/Intel, and big endian for MIPS). Traditionally,
all integers in a parameter section are signed integers with a range of –32768 to
+32767 and all bytes are signed bytes with a range of –128 to +127.

The next byte in the parameter record is the number of dimensions in the parameter,
which can be from zero (0) to a maximum of seven (7) dimensions. A parameter
with zero dimensions is a scalar. If the parameter is a matrix then the actual
parameter dimensions (e.g. 2 by 3, 6 by 6 etc) are stored in the next two bytes. This
is then followed by the parameter data itself.

A single byte follows the pointer to the next parameter data structure – this records
the length of the parameter description string (0-127 characters), which immediately
follows this byte. The parameter description can contain mixed case characters and
is generally used to provide a human-readable description of the parameter function.

In the example below, the parameter RATE in the group is stored as follows: POINT

0xFCh 0xFFh 0x52h 0x41h 0x54h 0x45h 0x0Eh 0x00h 0x04h 0x00

-4 -1 R A T E 14 4 0

0x00h 0x00h 0xF0h 0x42h 0x05h 0x56h 0x69h 0x64h 0x65h 0x6Fh

120.00 (Intel floating-point) 5 V i d e o

Figure 16 - A simple parameter record stored as a floating-point value.

In this case, the RATE parameter is correctly locked (the length is negative) and it
belongs to the GROUP with a group ID of –1. The POINT:RATE parameter is a
floating-point value and is stored in Intel format as a scalar with a description of
“Video.”

Notes for programmers – Parameters and Groups
1. The parameter and group formats both provide space for a description string

– this should always be filled in to provide some basic information about
the item and its use – consider this as providing documentation about the
information stored in the file.

2. Spell group and parameter names correctly – a software application that
expects to read data from a parameter called OFFSET will probably fail to
find it if the parameter has been spelt incorrectly as OFFSETS. Although the
C3D specification states that the first six characters must be unique, the

50 • The Parameter Section The C3D File Format User Guide

specification does not require that applications treat similar parameter
names in the same way. In fact, many modern applications will consider
that these two names describe different parameters.

3. For all non-array parameters, the usual method of having ‘d = 0’ is directly
equivalent to having ‘d = 1’ and ‘t = 1’, the only difference is that the
second approach requires one extra byte of storage.

4. The storage order of multi-dimensioned array parameters follows the
FORTRAN convention (for historical reasons). In this format, the
dimension that changes more rapidly appears first. For example, the
reconstruction volume (parameter “DATA_LIMITS” in group “SEG”) is made
up from two 3D vectors stored in the order MinX, MinY, MinZ, MaxX, MaxY,
MaxZ

5. Using the convention, this is defined as a 3 by 2 array. Therefore, the
correct definition for the parameter is Number of parameter dimensions = 2,
Value of first dimension = 3, Value of second dimension = 2

6. The parameter data section ends when the index to the next item is zero.

7. There is no count stored for the number of parameters in each group and all
group and parameter records can appear in any order. This means that it is
permissible for a parameter to appear in the parameter section before the
group information and software accessing a C3D file should be prepared to
deal with this situation.

8. Parameters are connected to groups by use of the group ID number. Group
records have unique ID numbers within the file, which are stored as a
negative value in byte 2. All parameters belonging to a group will store the
same ID as a positive value, also in byte 2.

9. Always use the absolute value of the first byte to determine the length of the
parameter name. This value may be set to a negative value to indicate that
the data item has been marked as locked and should not be edited.

10. Traditionally, all integers used in the parameter section are signed integers
with a range of –32768 to +32767 and all bytes are signed bytes with a
range of –128 to +127. However, some parameters may use unsigned
integers to store data that will never have a negative value. Unfortunately,
there is no flag to indicate that a C3D file uses unsigned integers in the
parameter section. The use of unsigned integers can only be determined by
finding negative values in certain parameter, pointer or index values. For
example, reading a negative array index is a clear indicator that unsigned
integers are being used.

11. Be aware that a group ID number may not be the same for a given
parameter in a given set of files. Group ID numbers are required to be
internally consistent in a single file but may vary even within successive
saves of the same file, although in practice, most software tends to preserve
Group ID numbers.

12. All C3D files require a minimum set of parameters in order to be portable
across different environments – always ensure that the minimum set of
required parameters are present in every C3D file – see page 69.

13. Always look before you leap – all C3D software applications must test that
parameters exist before they try to read them.

14. Do not assume that just because a parameter exists and has the name that
you expect, that it will contain the same type of data. The parameter
structure provides a means to determine the type of the parameter (floating-

The C3D File Format User Guide The Parameter Section • 51

point, signed integer, character etc) before you read it. The consequences of
reading a signed integer value when the data structure turns out to have
been (unexpectedly) floating-point will cause applications to fail.

15. It is important to note that many older C3D applications may have a fixed
amount of storage allocated within the application for Parameter Storage –
this is particularly true for programs written in FORTRAN with fixed
COMMON blocks. This can cause problems for users who add large
numbers of parameters (or reserve storage space by dimensioning large
arrays within the parameter section). This limitation can cause applications
to fail in unexpected ways when they attempt to access C3D files with large
parameters sections.

16. Applications that modify C3D files must take care to preserve all groups
and parameters from the original input file even if the application does not
use or understand the parameters.

17. When an application creates parameter records, it is sensible to make sure
that the records are created with some reasonable values – if the parameter
values are unknown when the parameter is created then the parameter
contents should be set to some convenient null value – ASCII spaces or 0.0
for instance.

18. Although the capability exists, in practice parameter groups themselves are
never locked. Locking is only used by individual parameters to flag items
that that contain critical values within the C3D file structure. These
parameters are described in detail in the chapter entitled “Required
Parameters” starting on page 69.

Security
The C3D file format allows any application to store a large number of parameters
within a C3D file, in a structure that provides a uniform access interface to the
information. This allows the user to perform read/write/modify operations on the
parameter data with relative ease. Unfortunately, uncontrolled editing of certain
C3D file parameters can create a problem.

For example, a casual change to the value of the Some parameters contain
values that should not be
changed – the locked flag
indicates that these values
are critical and should not
be modified.

POINT:SCALE parameter would
cause all the 3D data in the file to be incorrectly scaled. Likewise a change to the
value of ANALOG:USED (the number of analog channels contained within the C3D
file) could render the C3D file unreadable to most software programs – the C3D file
could appear to have a different amount of analog data than was actually contained
in the file.

The C3D parameter definition deals with this issue by allowing parameters to be
locked against unauthorized access. This is accomplished by setting the first byte of
the parameter header (the parameter length) to be negative (the absolute value
remains unchanged). All parameters that have a negative length are considered
locked and should not be casually changed by the user.

Unless there are special
circumstances, any
application that accesses a
C3D file should not modify
locked parameters.

Applications that allow the user to edit parameters should respect the locked status
flag and either, refuse to change locked parameters, or restrict this feature to prevent
an inexperienced user from damaging the integrity of the C3D file data.

Applications that create C3D files should make sure that they flag any parameters
that they create appropriately. Important parameters that can affect the data integrity
(i.e. the parameters DATA_START and POINT SCALET etc.) must be flagged as locked
so that any user editing the C3D file with another application will be warned before
they can do any serious damage.

52 • The Parameter Section The C3D File Format User Guide

The C3D File Format User Guide The Parameter Section • 53

The 3D/Analog Data Section

Overview
The C3D file format is designed to store 3D point and analog information so that the
3D locations of a number of markers can be synchronized with analog measurements
made at the same time. For this reason the 3D and analog samples are interleaved,
frame-by-frame, throughout the data in a straightforward manner. As a result, the
C3D data record format is quite flexible and can be used to create files that contain
only 3D data, 2D data or analog data or any combination. In addition, it is possible
(although not very efficient) to store the results of kinematical calculations (angles,
moments, accelerations etc.) within the 3D data record format.

A single 512 byte header section

A parameter section consisting of one or more 512-byte blocks.

3D point/analog data section consisting of one or more 512-byte blocks.

Figure 17 – The 3D data section within the C3D file structure.

Although the C3D format is designed for 3D positional information, 2D information
can be recorded by specifying one of the coordinates of the point and calculating the
other two from the observer data. This allows the C3D file format to be used by
systems that support single camera measurements – thus an observer (camera) might
provide positional information for the Y and Z planes while constraining the X
motion within a single fixed plane.

Description
The 3D point and analog data samples are written as sequential frames starting at the
beginning of the first 512-byte block specified by in the

Although the actual size of
the 3D/Analog data section
is not recorded in the C3D
file, it can be calculated
using parameter
information.

POINT:DATA_START
parameter. If the stored data contains both 3D point and analog information then the
3D point frame is always written first, starting with the first frame of data. If there is
only a single type of data (all 3D point data or all analog data) then the data section
will simply consist sequential frames of data samples.

The original description of the C3D file format states that the POINT:DATA_START
parameter is stored as a signed 16-bit integer. This limits the placement of the start
of the 3D/Analog data storage section to any 512-byte block boundary within the
first 16Mb (32767*512/1024) of the C3D file. By treating this parameter as an
unsigned integer (which is easily detected as it will have a negative value when it is

The C3D File Format User Guide The 3D/Analog Data Section • 55

greater than 32767 if read as a signed integer) the limit on the placement of the
3D/Analog section can be extended to the first 32Mb of the C3D file.

3D point and analog data samples may be stored in either signed integer or floating-
point format. Whichever format is selected must apply to both the 3D point and
analog data records within the same C3D file. If the 3D point data is stored in
floating point format, then the analog data must also be stored in floating point
format. It is not possible to mix data storage types within a C3D file, as there is only
a single flag to indicate which storage method is used.

The data format used
(signed integer or floating-
point) can be determined
by reading the C3D header
section – see page 31.

Since the range of the data is stored in the C3D parameter section there is no need for
an “end-of-data” marker - data is simply written from the first frame to the last
frame. Any unused storage in the final 512-byte block of the C3D file should be
filled with 0x00h for compatibility with older FORTRAN based applications that
read data in 512-byte blocks. Both 3D and analog data samples can cross the 512-
byte block boundaries within the C3D file.

Figure 18 – The 3D / analog data storage structure.

The C3D file format does not specify the order in which 3D point data values will be
written within any given C3D file except in so far that they will be written to the 3D
data section in the same order that they are described in the parameter section. It is
essential that applications that access the 3D point data determine the storage order
of the 3D points by reading the order of the point labels stored in the parameter
section. Applications that assume that 3D points will always be stored in the same
order will fail when presented with a C3D file that contains data stored in a different
order. The analog samples for each 3D frame are recorded sequentially – each 3D
frame is followed by the analog data associated with the 3D frame.

Note that the existence of a single point of 3D data in only one frame of a C3D file
requires that storage space be allocated in every single frame of the C3D file. This
can result in large C3D file with a considerable amount of wasted space if large
numbers of unused, short trajectories are preserved unnecessarily.

Analog channels are stored in sequence starting with the first analog channel, which
is always channel one. If ten analog channels are sampled then the ten analog values
are written starting with channel one and ending with channel ten. If there are
multiple sample of analog data per 3D frame then the next ten analog samples will
written until all analog data associated with the 3D frame was been stored. This will
be followed by the next frame of 3D data.

There is no provision to
store analog channels out
of sequence.

It is worth observing here that analog channels are usually stored in sequence starting
with the channel one. There is no provision, in the C3D format, to store channels 2,
8, and 10 and identify them as such – in order to store channel 10 all the channels
between 1 and 10 be stored. However, since analog channels can be referred to by

56 • The 3D/Analog Data Section The C3D File Format User Guide

their ANALOG:LABEL assignments there is really no need to store unused analog
channels if applications use the LABEL rather than the channel number to identify the
individual analog channels.

Both analog channels and 3D points stored within the C3D file format are indexed
and counted from base “one” – this can occasionally lead to confusion when
interfacing an analog data collection system that counts channel “zero” as the first
analog channel.

3D Data - Integer Format
If theA positive POINT:SCALE

parameter value indicates
that the 3D and analog
data section is stored using
signed integer format.

 POINT:SCALE parameter is positive then the 3D data section will contain
signed integer format data for each stored trajectory. Note that the POINT:SCALE
parameter is one of the parameter section values that is copied to the C3D file header
(words 7-8) as can be quickly located and read by software applications without
requiring a detailed search of the parameter section. The 3D integer point record is
organized as follows:

Word Contents (signed integer format)

1 X co-ordinate of point divided by the POINT:SCALE factor.

2 Y co-ordinate of point divided by the POINT:SCALE factor.

3 Z co-ordinate of point divided by the POINT:SCALE factor.

4 Byte 1: cameras that measures marker (1 bit per camera)
Byte 2: average residual divided by the POINT:SCALE factor.

Figure 19 – 3D point data storage using INTEGER format.

The first three signed integer words record the X, Y, and Z co-ordinate values of the
3D data point, divided by the floating point POINT:SCALE parameter value.

Word four of the 3D point record is comprised of two bytes. The first byte records
which observers (normally cameras) provided information used in calculating the 3D
point, while the second byte contains the average residual for the 3D point
measurement. The 3D point residual is a measurement that provides information
about the relative accuracy of the 3D measurement and must be multiplied by the
POINT:SCALE parameter to obtain the scaled value.

Figure 20 - Residual and mask storage - Integer format.

Notes for Programmers – Integer 3D Data
1. If a point is invalid then the fourth word (camera mask and residual) will be

set to –1 and the X, Y and Z co-ordinate values should all be zero.

2. If word 4 is not positive then the point is considered a valid point and
should be interpreted as follows:

a. Byte 1 has seven bits that are set to “1” corresponding to the
cameras that contributed to the measurement of the point - bit 1

The C3D File Format User Guide The 3D/Analog Data Section • 57

represents the first camera, bit 2 the second, etc. By convention,
all camera bits will be set to 0 for interpolated, filtered or
otherwise calculated data points. Note that the camera bits are in
the high byte of word 4 of the integer record – the most significant
bit of this word is the sign bit. Therefore, there are only seven bits
available for the cameras. Any point with a negative residual is
interpreted as invalid - setting the 8th bit produces a negative
signed integer and hence the point would be interpreted as invalid
if this bit was used to store a camera flag.

b. Byte 2 of word 4 represents the average of the residuals for the
measurement on the point and must be multiplied by the scaling
factor. If byte 2 is zero then the 3D point is interpolated or
otherwise generated, and an examination of the camera mask in
byte 1 will confirm this, i.e. the entire word should be zero.

3. Within each 3D sample, the points are stored in the order that they are listed
in the parameter section (see the POINT:LABELS parameter on page 73)
followed by the analog data (ordering by frames) if any analog data is
present.

4. When a C3D file contains signed integer 3D data then any corresponding
analog data values must also be stored in signed integer format.

5. Software applications should be prepared to handle corrupted C3D files that
contain header or parameter records that do not contain the correct pointers
to the start of the 3D data section.

3D Data – Floating-point Format
If the A negative POINT:SCALE

parameter value always
indicates that the 3D and
analog data section is
stored using floating point
format.

 POINT:SCALE parameter is negative then the 3D data section will contain
scaled floating-point format data for each stored trajectory. This format provides
increased precision and, since the data is stored as scaled values, there is no need to
apply a scaling factor to the data. Since the floating-point format uses eight 16-bit
words to store a 3D point, it will result in C3D files that are double the size of integer
format C3D files. Note that a valid scaling factor is still required as it is used in the
calculation of the 3D point residual value.

The POINT:SCALE parameter is one of the parameter section values that is copied to
the C3D file header (words 7-8) as can be quickly located and read by software
applications without requiring a detailed search of the parameter section. The 3D
floating-point record is organized as follows:

Word Contents (Floating-point format)
1 – 2 The scaled X co-ordinate of the point.

3 – 4 The scaled Y co-ordinate of the point.

5 – 6 The scaled Z co-ordinate of the point.

7 – 8 After converting to a signed integer:
Byte 1: cameras that measured the marker (1 bit per camera using bits 0-7)
Byte 2: average residual divided by the POINT:SCALE factor.

Figure 21 – 3D point data storage using floating-point format.

The first three floating-point words record the scaled X, Y, and Z co-ordinate values
of the 3D data point. Word four is a floating-point value that must be converted to a
signed integer and then interpreted as two bytes. The first byte records which
observers (normally cameras) provided information used in calculating the 3D point,

58 • The 3D/Analog Data Section The C3D File Format User Guide

while the second byte contains the average residual for the 3D point measurement.
The 3D point residual is a measurement that provides information about the relative
accuracy of the 3D measurement.

Figure 22 - Residual and mask storage – Floating-point format.

Notes for Programmers – Floating Point 3D Data
1. When a file contains floating-point scaled 3D data then all corresponding

analog data values must also be stored in floating-point format.

2. If the 3D data points are stored in floating point format, the X, Y, and Z co-
ordinates have been already multiplied by the scale factor. Words 7-8
contain normal 4th word signed integer value stored as a floating-point
number. To extract the mask and residual data, this word should be
converted to a signed integer, divided into high and low bytes, and the low
byte multiplied by the absolute value of the POINT:SCALE parameter to
obtain the correct residual value.

3. It is important to realize that the sign of the POINT:SCALE parameter and
the magnitude of the parameter are treated as two independent factors in
floating point data files. The sign simply indicates that the file is a floating-
point format, while the magnitude is used to scale the residual values and
should be set appropriately.

4. Within each 3D sample, the 3D points are stored in the order recorded by
the parameter POINT:LABELS followed by the analog data, if present.

5. Software applications should be prepared to handle corrupted C3D files that
contain header or parameter records that do not contain the correct pointers
to the start of the 3D data section.

3D point Residuals
All 3D points recorded in the C3D file have the capability of recording a residual
measurement value – this is a number that provides information about the relative
accuracy of the 3D measurement of the associated point

Although the concepts behind the calculation of the 3D point residual are based on
optical photogrammetry, the general principals are applicable to most 3D
measurement systems and can be applied to many 3D measurement techniques.

The illustration below demonstrates the situation when two observers see a single
point in 3D space. Observer C1 measures the point to be in the direction C1 to D1,
and observer C2 determines the point to be in the direction C2 to D2. Thus, we
know that the point lies somewhere on the line C1-D1, and that it must lie on the line
C2-D2. This is possible only if the point lies at the intersection of the two rays; thus,
the 3D reconstruction process must calculate the locations of intersections of rays
from different observers.

However, due to small errors in the measuring system, the measured rays from the
two observers to any single point will not, in general intersect. This invariably
results in the measurement software making a decision about the most probable
location for the point under observation when the rays fail to intersect. For the two

The C3D File Format User Guide The 3D/Analog Data Section • 59

rays shown, the point location is set at the mid-point of the line forming the shortest
distance between them.

Figure 23 - Point residual determination with two cameras.

The distances from the assumed point location to each ray are related to the
uncertainty of the point’s calculated location, and are termed the residuals for the
measurement. Generally, inaccurate measurements or calibration will produce large
residuals although in the case of two-observer measurements, small residuals do not
necessarily mean that the measurements were of high accuracy. If the errors happen
to be in the plane containing the two rays (containing C1-D1 and C2-D2), then small
residuals will result no matter how large the actual errors are.

For this reason, three observer measurements are usually more reliable. A three-
observer measurement involves a third ray (C3-D3) which will normally pass in the
vicinity of the intersection of the other two rays and as a result, the problem of
determining the point’s most probable position becomes somewhat more
complicated.

Figure 24 – Point residual determination with three cameras.

A least-squares technique should be used to calculate the location of a point in space
such that the sum of the squares of the shortest distances from that point to each ray
is a minimum. This calculated point then represents the best estimate of the
observed point’s center. The individual residual components are the shortest
distances (perpendiculars) from the calculated point to each ray. Application

60 • The 3D/Analog Data Section The C3D File Format User Guide

software that calculates 3D point coordinates should also store the average value of
the residuals for each 3D point in each frame. This value is a useful indicator of the
reliability of the marker location determination.

In a three-observer measurement the probability of obtaining an inaccurate point
location with low residuals is quite small. Two of the observers must have errors of
exactly the right magnitude in both horizontal and vertical components of their ray
directions if a three-ray intersect with very small residuals and a large error is to be
produced. Hence, the average residual value is a much better indicator of 3D point
location accuracy if more than two observers contribute to the measurement. In
general, the residuals obtained for two observer measurements will be smaller than
those obtained from measurements made by three or more observers – this does not
imply that two observer measurements are more accurate.

Do not assume that low 3D
point residuals indicate
accurate measurements
since the numbers are
generated by software.
Different methods of
calculating the residuals
can generate different
values from the same data.

By convention, 3D point residuals can also act as flags for modified or invalid data
points. A residual value of –1.0 is used to indicate that a point is invalid while a
value of 0.0 indicates that the 3D point coordinate is the result of modeling
calculations, interpolation or that the data has been filtered. Valid residual values are
always positive numbers.

Camera contribution mask
In addition to a 3D residual value, the 3D coordinate format can also provide
information about which observers (generally but not necessarily, cameras) provided
the information used to calculate the associated 3D point location. This information
is called the “camera contribution” or “camera mask” and is stored, together with the
3D residual, in the fourth word of the 3D point record.

The camera mask can be very useful, particularly when used in conjunction with the
residual data as it provided information that can allow the user to evaluate the data
quality. Since the camera mask tells us which cameras (or observers) were used to
construct any given 3D point, is can be quite easy to identify a poor observer (or
poorly calibrated camera) simply by noticing that the residuals increase when a
particular camera is used to calculate the 3D point. Typically, this shows up as a
sudden jump in the point trajectory data when the offending observer contributes
faulty positional information. Careful observation of noise levels of individual
trajectories within the data collection volume can lead to improvements in the overall
system accuracy by enabling the photogrammetry software to eliminate cameras or
observation sources that are not performing well.

Improvements in the automation of data collection, together with an increase in the
number of cameras in motion capture systems make the routine evaluation of the
camera mask an essential part of quality control. In addition, engineers configuring
an automated motion capture environment for the first time can directly assess the
entire data collection process (data collection, trajectory identification and
generation) by careful evaluation of the camera mask and residual values within a
C3D file.

Bit-8 Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1

Camera
#7

Camera
#6

Camera
#5

Camera
#4

Camera
#3

Camera
#2

Camera
#1 Not used

Figure 25 - 3D point camera contribution

The camera contribution mask example shown above is found in word 4 of the
signed integer 3D point data. In the camera contribution mask, byte 1 of word 4
contains eight bits, seven of which are set corresponding to the observers that

The C3D File Format User Guide The 3D/Analog Data Section • 61

contributed to the points measurement. Bit-1 refers to the first camera, bit-2 to the
second etc.

The camera contribution byte is part of the 16-bit signed integer used to store the 3D
residual and as a result, bit-8 is not available to store camera mask information as it
records the sign of the 16-bit signed integer. Note that, for compatibility and to
simplify data access functions, the same signed-integer format is retained internally
even when the 3D points are stored using the floating-point format.

There is no provision for recording the contribution of more than seven observers or
the requirement that these bits are actually used when a C3D file is created. The
camera contribution bits are usually cleared if the associated 3D point has been
modeled, interpolated, or otherwise modified. As a result, the presence of an active
camera contribution mask, will usually indicate that the associated 3D data point is
raw and has not been filtered or modified in any way.

Analog Data Storage
Although the method of storing the actual sample values is different between the
Integer and Floating Point versions of the C3D file format, both versions organize
the individual analog data samples in the same way within the 3D Data section of the
C3D file.

The analog record for each 3D frame can contain one or more analog data samples
where each analog data sample consists of one or more analog measurements
(channels) usually recorded from an ADC (analog to digital converter) during the 3D
frame sample period. The parameter ANALOG:RATE records the total number of
analog data samples per 3D frame while the parameter ANALOG:USED records the
number of analog measurements, or channels, within each analog data sample. All
of this data is recorded at a 3D frame rate whose value is recorded in the
POINT:RATE parameter.

Thus, when analog data is present in the C3D file, each 3D frame is followed by one
or more analog samples for each analog channel. These are organized as shown
below where “N” is the number of analog measurements per 3D frame (stored in
word 10 of the C3D file header), and “n” is the number of analog channels that are
stored in the C3D file. The number of channels sampled is not stored in the C3D
header directly but can be calculated as (Word 3) / (Word 10) or (total analog
samples per 3D frame) / (number of samples per analog channel):

Analog Channel 1

Analog Channel 2

…
Analog Data Sample 1

Analog Channel ‘N’

Analog Channel 1

Analog Channel 2

…
Analog Data Sample 2

Analog Channel ‘N’

… through to the last sample…

Analog Channel 1

Analog Channel 2

…
Analog Data Sample ‘n’

Analog Channel ‘N’

Figure 26 – The organization of analog data

62 • The 3D/Analog Data Section The C3D File Format User Guide

For example, let us consider a C3D file that contains 3D point information that has
been recorded at 60Hz, and contains 30 analog channels that have been recorded at a
rate of 600 samples per second. This information is stored in the C3D file in the
following parameters:

• POINT:RATE = 60

 = 30 • ANALOG:USED

• ANALOG:RATE = 600

Thus, referring to Figure 26, the analog data will be organized so that the each
Analog Data Sample will contain 30 values – one value per analog channel. This is
recorded in the ANALOG:USED parameter. There will be 10 Analog Data Samples
per 3D frame of data and there will be 60 3D frames per second as recorded in the
POINT:RATE parameter. As you can see, the C3D file does not directly store the
number of Analog Data Samples per frame as a parameter; instead this value is
calculated by dividing the ANALOG:RATE value by the POINT:RATE value.

Note that the Analog Data Samples per 3D frame value is stored in word 10 of the
C3D file header, together with a count of the total number of analog samples per 3D
frame (in this case 300 – ANALOG:USED * Analog Data Samples) so that the analog
data can be quickly read by any application that opens a C3D file.

Analog Data - Integer Format
When storing analog data using the integer C3D format, the analog sample value is
stored in its raw form as a sequence of 16-bit integer words. By default, signed
integer values are expected but unsigned integers may be used if the parameter

A positive POINT:SCALE
parameter value indicates
that the analog data
section is stored using
integer format.

ANALOG:FORMAT is set appropriately. Note that the C3D format expects that the
analog samples will be signed integers; it does not specify the resolution of the
analog samples. While 12-bit resolution samples are common, other resolutions (i.e.
16-bit) may be used to store analog data – the resolution of the data values may be
indicated by the parameter – see page 86ANALOG:BITS for descriptions of these two
parameters. Both 12-bit and 16-bit analog sample resolutions are common.

To convert the analog sample data into real world units, regardless of the actual
sample resolution:

real world value = (data value - zero offset) * channel scale * general scale

Where:

‘zero offset’ is in the “ANALOG: OFFSET” parameters (integer)

‘channel scale’ is in the “ANALOG: SCALE” parameters (floating-point)

‘general scale’ is the “ANALOG: GEN_SCALE” parameter (floating-point)

The raw analog data samples are stored as signed integers by default. However,
many analog to digital converters (ADCs) actually generate unsigned binary values,
which may be stored within the range of values supported by the signed-integer
format. As an example of this, consider a typical 12-bit ADC – this generates
numbers in the range of

The original C3D format
description expected, but
did not explicitly state, that
all analog data values
would be stored as signed
integers. However, some
software applications store
analog values as unsigned
integers, which can lead to
interpretation problems
when 16-bit analog data is
stored.

12 through 0 4095 (a total of 2 unique values). These values
may be written to the C3D file as –2048 through +2047 or simply recorded as 0
through 4095. The first range is signed (it contains both positive and negative
numbers), while the second range is unsigned. In this case, the use of signed or
unsigned integers to store the analog sample is immaterial as both values fall within
the range of a signed integer. However, this is not the case when 16-bit ADC
samples are stored; in this case the 16-bit data samples must be stored as signed
integer numbers (the default) unless the optional parameter ANALOG:FORMAT is set

The C3D File Format User Guide The 3D/Analog Data Section • 63

to “ ”. UNSIGNED

In the absence of the ANALOG:FORMAT parameter, the format of the analog data can
be deduced from the value of the ANALOG:OFFSET parameter. 12-bit unsigned
binary values require an of OFFSET 2047 (although many programs use 2048), while
signed binary data will have an of OFFSET 0000. 16-bit unsigned binary data will
require an OFFSET of 32767 while 16-bit signed binary data will use the same offset
value of 0000.

It is very important to note that when a C3D file contains integer analog data then
any corresponding 3D points must also be stored in integer format as the choice of
format is specified by the parameter POINT:SCALE for the entire C3D file. Setting
this parameter to a negative value flags the use of floating point data within the entire
file, making it impossible to mix floating-point and integer data formats in the data
block.

Notes for Programmers – Integer Analog Data
1. By default, all analog samples are stored using signed 16-bit integers

regardless of the resolution of the original data. The actual resolution and
format of the data may be recorded as indicated by setting the optional
ANALOG:FORMAT parameter to the value “ ” and the optional UNSIGNED
ANALOG:BITS parameter to the actual number of bits used, i.e., the value 12
or 16.

2. If the ANALOG:FORMAT parameter is “ ” then the UNSIGNED
 parameter must be interpreted as an unsigned integer. ANALOG:OFFSET

3. If the ANALOG:FORMAT parameter does not exists then assume that the
analog data is signed. This will be correct most of the time.

4. The possibility of 16-bit integer overflow exists when applying the
ANALOG:OFFSET parameter to the sampled 16-bit analog data. It is
recommended that all applications perform analog scaling calculations with
more than 16-bits of resolution (typically 32-bit) to allow for internal math
overflow or convert the C3D file format to floating point first.

5. Some software applications “auto-zero” analog data values by adjusting the
ANALOG:OFFSET parameter. Thus, for example, 12-bit analog data could
easily have varying values that are close to ANALOG:OFFSET 2047 but vary
from channel to channel.

Analog Data – Floating-point format
When storing analog data using floating-point format, the analog information is
stored as a floating-point value. This is usually the (12 to 16 bit resolution) analog
sample value after conversion to its equivalent floating-point value. Floating-point
analog data storage is organized in exactly the same way, within the C3D file data
section, as the integer analog data.

A negative POINT:SCALE
parameter value indicates
that the analog data is
stored using floating point
format.

The parameters ANALOG:GEN_SCALE and appropriate ANALOG:SCALE values must be
applied to the floating-point value to obtain real world units in exactly the same way
as we scale the integer formatted data.

Thus, a floating-point analog sample is calculated as:

real world value = (data value - zero offset) * channel scale * general scale

Where:

‘zero offset’ is in the “ANALOG: OFFSET” parameters (integer)

64 • The 3D/Analog Data Section The C3D File Format User Guide

‘channel scale’ is in the “ANALOG: SCALE” parameters (floating-point)

‘general scale’ is the “ANALOG: GEN_SCALE” parameter (floating-point)

When a C3D file contains floating-point analog data then any corresponding 3D
points must also be stored in floating-point format.

Notes for Programmers – Floating Point Analog Data
1. While data can be converted from integer to floating point without any loss

of resolution, the precision of the reverse operation from floating point to
integer conversion is not guaranteed and should be avoided unless
absolutely necessary. It is strongly recommended that the results of any
conversion to integer are stored in a new file, preserving the original data.

2. Always create and use the appropriate integer format values for the
parameters ANALOG:GEN_SCALE, ANALOG:SCALE and ANALOG:OFFSET
when storing analog data in floating point C3D files. These parameters
contain useful information about the original source of the analog samples.
Ideally these parameters will contain values that scale the analog data
correctly regardless of whether the storage format is integer or floating
point format.

Scaling Resolution
The C3D format description requires that sensible analog and point scale values are
used on the assumption that anyone creating C3D files would realize the folly of
choosing inappropriate scale values. The following sections discuss some factors
that influence the choice of scaling factors for both point and analog data.

3D Point Data
In the C3D file format, 3D point data was originally intended to store marker
position data within a calibrated volume. Hence, the data would be homogeneous in
the sense that units and relative scales of each point data item would be the same.
When stored in integer form, the stored 16-bit signed integer value must be
multiplied by the POINT:SCALE floating-point scaling factor (header words 7-8) to
yield a real world value – generally where all the data points are measured in
millimeters.

The signed integer variable type represents an integer value from -32768 to +32767.
The scaling factor is dependent upon the calibration volume and is calculated when
the data is stored such that the greatest precision is allowed over the entire volume of
interest.

For example, if the largest dimension of the calibration is 4 meters then, assuming
the calibrated volume begins at the global (0,0,0) reference location and contains
only positive X-direction points with the largest dimension being X=4 meters, the
scaling factor for length units expressed in mm would be

Scaling Factor = 4000 mm/32767step = 0.122 mm/step

 0 4000 mm

+-------------------------+------------------------+

-32768 0 +32767 steps

Thus the resolution of the spatial locations is:

The C3D File Format User Guide The 3D/Analog Data Section • 65

Resolution = 1 step * 0.122 mm/step = 0.122 mm

Clearly, problems can occur when the scale of the stored data reaches that of the
scaling factor or resolution. However, as can be seen from the example above, the
resolution of integer data within a C3D file in this example is well within even the
theoretical limits of most current 3D motion measurement systems.

Problems do arise however when software applications change the interpretation of
the 3D data point. For example, software applications have used the 3D point data
type to store the results of internal calculations of non-3D information such as
accelerations and moments derived from calculations in clinical software
applications. Depending on the scaling of these calculations, this can produce
numbers that can not be accurately represented with the same POINT:SCALE factor
required by the 3D point data.

Under these circumstances, moments in a system with dimensional units of mm and
force units of N are commonly computed in units of Nmm. This can lead to problems
for users who manipulate the 3D point data within the application and then store the
results in an integer format C3D file. For instance, users may wish to scale the
above mentioned Nmm values by dividing by 1000 to obtain the more commonly
used units of Nm and then further dividing by the subjects body weight for
normalization to obtain units of Nm/kg. Such a conversion from Nmm to either Nm
or Nm/kg can easily result in values on the order of 1 or even 0.1 which are
significant in the context of their biomechanical importance.

When storing these values within integer 3D data variables only 8 numbers (steps)
would be available to store values between 0 and 1 and all values between 0 and 0.1
would be treated as 0.0 (using the example above).

0 1.0 mm 0 0.1 mm

+-------------------------- +---------------------------

0 8 steps 0 1 step

The loss of resolution during the conversion of the floating-point values to signed
integer values limited by the POINT:SCALE factor results in loss of data resolution
when the results approach the POINT:SCALE value.

Since this truncation of the data occurs when the floating-point values are saved to a
C3D file using the integer formats, the loss of resolution will not be apparent until
the C3D file is later reloaded. It is also worth noting that floating point data that has
been filtered will become “noisy” if it is converted to signed integer values. This is
due to the loss of precision during the floating point to signed integer conversion
process. This is a particular problem at very low signal levels.

There are several ways to avoid this scaling problem. Perhaps the most obvious is to
be aware of the units and the ranges of interest as well as the resolution of the system
and to scale appropriately within any application that may need to generate integer
formatted C3D files.

A better solution would be to store the results of these calculations in a separate data
section elsewhere in the C3D file where each stored variable could be assigned its
own scaling factor. However, until the C3D standard includes a common format
specification for this type of storage, any data saved in this way would not be
universally accessible.

In general, the safest solution, if data must be written to a C3D file in this manner, is
to always specify the use of a floating-point format for C3D files and never convert
floating-point formatted files into integer format. However, since many older C3D
applications cannot read floating-point formatted files this is not always an option.

66 • The 3D/Analog Data Section The C3D File Format User Guide

Analog Data
You must ensure that all ANALOG:GEN_SCALE and ANALOG:SCALE values are set to
values that scale the analog data in meaningful ways. Thus force plate data channels
will contain ANALOG:SCALE values that are consistent with the scaling calculations
that are required by the force plate TYPE description in the C3D manual. Other
analog channels that containing data with known scaling - for example strain gauge
signals, or torque, velocity, and angle data from a dynamometer system etc - should
have ANALOG:SCALE values that make sense and are described in the ANALOG:LABEL
and ANALOG:DESCRIPTION entries.

Analog data that does not have fixed, known, scaling values (e.g. EMG signals)
should be scaled in terms of "volts applied to the ADC input", allowing the data to be
viewed and scaled later in sensible terms. Any post-processing scaling can be
applied as a separate value, stored in the C3D parameters, allowing the data to be
viewed either in terms of the original "recorded values", or displayed "scaled" by
third-party software. An Excel spreadsheet can be downloaded from the
www.c3d.org site that simplifies and documents most common C3D scaling
calculations.

It is strongly recommended that all ANALOG:SCALE values are chosen appropriately
so that the analog data values are preserved when C3D files are converted between
integer and floating point data types. This means that if your default file storage
format is floating point then all analog data should be scaled to produce numbers
within a range of a signed 16-bit integer - specifically −32,768 to +32,767 when the
C3D file is converted to the integer format.

Failure to follow this recommendation may result in analog data values being
corrupted if the C3D file is converted to integer format unless the conversion
operation goes to the trouble of rescaling the affected analog channels. This can be
avoided by choosing appropriate analog scale values or, if you are in doubt, always
storing your data in integer formatted C3D files.

The C3D File Format User Guide The 3D/Analog Data Section • 67

Required Parameters

Overview
The following paragraphs describe the basic parameters that must exist in almost
every C3D file that contains 3D and/or analog data. You will find that most
common applications that read C3D files will expect to find these parameters
containing sensible values whenever a C3D file is opened. If you are attempting to
implement C3D file compatibility in an application then this chapter describes the
minimum parameter set that is required to fully describe the data. All parameter
data values are stored in a common format and can be examined and modified by
appropriate applications.

Parameters are usually
stored in C3D data files
with 3D or analog data,
but may be stored in
separate parameter files.

The term parameter in a C3D file refers to certain quantities that may need to be
communicated to programs that access the C3D file in order to process the data
correctly. Additionally, some useful descriptive information is stored in parameter
format for convenient access and reference by the user.

A C3D file can contain many different parameters – some of these are essential and
are found in every C3D file, while other parameters will only be seen in C3D files
from specific manufacturers or are parameters generated by post-processing of the
data. This situation is complicated by the inherently general nature of the C3D file.
Most C3D files contain 3D point data and analog data related to the 3D data –
however, it is possible to generate valid C3D files that contain only 3D data or files
that contain only analog data. These files must include some parameters that serve
simply to indicate that the file does not have a particular data type.

If you are writing software
to create a C3D file then
include all the parameters
described in this chapter as
“locked” and assign
appropriate values to them
that describe the data in
the C3D file.

Not all parameters are intended to be editable – the parameter record contains a
locking mechanism that may be set to indicate that a parameter should not be
modified by the user after it has been set by a program. Such parameters are either
assigned values by programs (and inappropriate values could cause other programs
using that data to malfunction), or else contain data of an informational nature (e.g.,
the time at which a calibration was performed), which should not be changed.

Signed vs. Unsigned C3D files
Some of the parameters in C3D files store data values using 16-bit integers, while all
of the arrays use an 8-bit byte as an index. In the original C3D specification it was
assumed that all integers used in the parameter section were signed integers with a
range of –32768 to +32767 and all bytes were signed bytes with a range of –128 to
+127. Thus, every 16-bit integer parameter could store both positive and negative
values and all arrays could have both positive and negative indexes.

The C3D File Format User Guide Required Parameters • 69

However, some common 16-bit integer parameters never take a negative value, for
example, both the 3D frame count, and the number of 3D points recorded are always
positive values. In addition, arrays within the C3D file (which use an 8-bit index)
never use a negative index – the array index values are always positive. This has
lead some software application writers to assume that some parameters are actually
stored as unsigned 16-bit values and that all arrays use unsigned 8-bit byte indexes.
While this is convenient, in that it doubles the amount of array storage available, and
doubles the number of frames that can be stored in a C3D file, it may cause problems
for some older software applications that will read negative values for frame ranges
and array indexes.

Although the use of unsigned integers and array indexes is a potential source of
problems for older software applications, it is unlikely to become a significant issue.
The majority of older, FORTRAN written, applications will fail to read the newer
“unsigned” C3D files for other reasons, most notably the fact that the larger arrays
created by the use of unsigned bytes as array indexes significantly increases size of
the parameter section. Many of the older software applications, written using signed
integers throughout, allocate fixed amounts of parameter storage (generally about
10kb) and any C3D file that uses unsigned array indexes is very likely to overflow
this allocation – usually with fatal results for the application.

Since the discussion above does not change the C3D file format at a binary level
there is no flag to indicate that a C3D file uses unsigned integers in the parameter
section. The use of unsigned integers can only be determined by finding negative
values in certain parameter or index values as shown in the table below:

Parameters Signed C3D file Unsigned C3D file
Data value < 32768 Data value > 32767 POINT:USED

Data value < 32768 Data value > 32767 POINT:DATA_START

Data value < 32768 Data value > 32767 POINT:FRAMES

Array index < 128 Array index > 127
POINT:LABELS

Parameter length < 128 Parameter length > 127

Array index < 128 Array index > 127
POINT:DESCRIPTIONS

Parameter length < 128 Parameter length > 127

Data value < 32768 Data value > 32767 ANALOG:USED

Array index < 128 Array index > 127
ANALOG:LABELS

Parameter length < 128 Parameter length > 127

Array index < 128 Array index > 127
ANALOG:DESCRIPTIONS

Parameter length < 128 Parameter length > 127

Array index < 128 Array index > 127 ANALOG:SCALE

Array index < 128 Array index > 127 ANALOG:OFFSET

Array index < 128 Array index > 127 ANALOG:UNITS

Array index < 128 Array index > 127 FORCE_PLATFORM:CHANNEL

Data value < 32768 Data value > 32767 FORCE_PLATFORM:ZERO

Figure 27 – Signed vs. Unsigned C3D file parameters.

It is worth pointing out at this stage that it is highly unlikely that many of these
parameters will ever be required to exceed the ranges supported by a signed C3D
file. In general, the POINT:LABELS and DESCRIPTIONS are the most likely to
exceed the signed range of 127 array entries.

70 • Required Parameters The C3D File Format User Guide

While it is theoretically possible that almost all of the force plate parameters could
take unsigned values, the only ones that are likely to be unsigned are the parameters
FORCE_PLATFORM:CHANNEL which could use an unsigned array if the C3D file
contained more than 127 analog channels and FORCE_PLATFORM:ZERO in very large
C3D files where data at the end of the file is used to zero the force plate signals.

The POINT group
The POINT parameters group provides information about the 3D sample data
contained within a C3D file as well as some basic information about the data
environment. As a result, parameters such as POINT POINT:DATA_START,
POINT:FRAMES, and POINT:USED are required even if the C3D file contains only
analog information without any 3D information at all. The POINT:DATA_START
parameter is needed to provide a pointer to the start of the 3D point and analog
storage within the file. The POINT:USED parameter enabled any software application
to determine the number of 3D points recorded in the data area – thus it must be set
to zero to indicate that the 3D point and analog storage area does not contain any 3D
point data.

Other POINT parameters may be required by particular software applications – you
will need to consult your software or hardware manufacturers documentation for
details of application specific parameters and their use. It is worth noting here that
every parameter and group structure has an associated description string that should
be used to provide some basic information about each group and parameter.

USED
The This parameter is Locked

and should not be changed.
Extreme caution should be
exercised when editing the
value of this parameter as
it affects the interpretation
of the 3D/analog data
storage records.

POINT:USED parameter is a single signed integer value that contains the number
of 3D point coordinates that are written to each frame of data in the C3D file data
section. If it is wished to store coordinates for say ten 3D points, then POINTS:USED
must be ten or greater, and every frame will have space for POINTS:USED number of
3D points. Any unused point location should be filled with an “invalid point” having
X,Y,Z = 0, and the fourth word equal to -1. POINTS:USED or the number of valid
points stored in the frames is not dependent on the POINT:LABLES list, which may
contain any number of labels. If the label list contains fewer labels than valid points
stored, the application should be prepared to supply default label names.

The importance of the USED parameter lies in the fact that an application that is
reading the 3D data section directly must use this value to determine how many 3D
co-ordinate points are stored in each frame. The points do not have to be valid, they
just have to have storage allocated, – invalid points will be stored with “invalid”
coordinates if no trajectory is assigned to the label. When an application has read

 number of 3D co-ordinate points then it has read the entire frame of 3D data. USED

C3D files that contain
more than 32,767 3D
points may not be readable
by some older software
applications.

As a signed integer, this parameter has a possible range of –32768 to +32767. Since
there is no conceivable requirement to store negative values for this parameter, this
range could be extended by interpreting this parameter as an unsigned integer with a
range of to 0 +65535. The use of an unsigned value for this parameter would be
flagged if the parameter returned a negative value when read as a signed integer.

The parameter value can also be found in word 2 of the C3D file header. The USED
POINT:USED header value should always be identical to the parameter value.

The C3D File Format User Guide Required Parameters • 71

SCALE
The This parameter is Locked

and should not normally be
changed. Extreme caution
should be exercised when
editing this parameter as it
affects the 3D scaling.

POINT:SCALE parameter is a single floating-point value that records the scaling
factor that must be applied to convert the signed integer 3D point values into the
reference coordinate system values recorded by the POINT:UNITS parameter. If the
C3D file contains 3D points saved in floating-point format then the POINT:SCALE
value must be set to a negative value. This value is the POINT:SCALE value that will
be applied if the C3D file is converted to integer format.

To retain the maximum resolution for integer data, the 3D scale factor should be
about (max. absolute coordinate value used)/32000. This will allow all of the 3D
point coordinates to be expressed within the range of a 16-bit signed integer. Since
the SCALE value is required to interpret the 3D residual it is important that a sensible
SCALE value is calculated even if the 3D information stored in floating-point format.

It is important to note that
every distance in a C3D
file must be expressed in
the same units.

The SCALE parameter value can also be found stored in floating-point format in
words 7-8 of the C3D file header. The POINT:SCALE header value should always be
identical to the value stored in the parameter section.

Note that if an integer formatted C3D file is converted to a floating-point C3D file
then it is important to preserve the absolute POINT:SCALE value, as this will allow the
file to be transparently converted back into an integer form if desired. The
POINT:SCALE value is also used to scale the 3D residual information when a C3D file
is stored in integer or floating-point formats.

RATE
The This parameter is Locked.

Extreme caution should be
exercised when editing the
value of this parameter as
it affects the interpretation
of the 3D/analog data
storage sections

POINT:RATE parameter is a single floating-point value that records the 3D
sample rate of the data contained within the C3D file in samples per second. Note
that this is not the necessarily the same as the original data sample rate. For instance
if the 3D data points were recorded on a 60 Hz system, then RATE should be set to
60. If the C3D file only contains 3D sample data for every fourth sample then the
POINT:RATE value will be 15. This parameter is used to calculate times for the 3D
data samples.

The RATE parameter value can also be found stored in floating-point format in words
11-12 of the C3D file header. The POINT:RATE header value should always be
identical to the value stored in the parameter section.

The same POINT:RATE value applies to all 3D samples – the C3D file format
requires that all 3D points be recorded at a single rate. This means that if the C3D
file is used to store 3D data from a variety of different sources, all 3D points (even
fixed points) must be sampled at the rate required by the fastest moving 3D point.

DATA_START
The POINT:DATA_START parameter is a single signed integer value. This value is a
pointer to the first block of the 3D/analog data section within the C3D file and must
always be used to determine start of the data section. A C3D block is always 512
bytes long (256 sixteen-bit words). The first block is always block number one and
contains data structures (header records etc.) that indicate the contents of the file.

This parameter is Locked
and should not be changed.
Extreme caution should be
exercised when editing the
value of this parameter.

T

Since the POINT:DATA_START T parameter is a 16-bit signed integer parameter, this
limits the location of the first block of 3D data storage to within the first 16Mb of the
C3D file. By interpreting this parameter as an unsigned integer with a range of 0 to
+65535 which extends the position of the start of the 3D/Analog data storage section
to anywhere within the first 32Mb of the start of the C3D file. The use of an
unsigned value for this parameter would be flagged if the parameter returned a

C3D files that use
DATA_START values
greater than 32,767 may
not be readable with some
older software
applications.

72 • Required Parameters The C3D File Format User Guide

negative value when read as a signed integer.

Although located in the POINT group, this parameter is required even when the C3D
file only contains analog data, as analog data is stored in the 3D data section.

A copy of the DATA_START parameter value can also be found stored in word 9 of
the C3D file header to enable software applications to quickly locate the start of 3D
data without requiring them to read the entire parameter section. The
POINT:DATA_START header value should always be identical to the parameter value.

FRAMES
The This parameter is Locked.

Extreme caution should be
exercised when editing the
value of this parameter.

POINT:FRAMES parameter is a single signed integer value that records the
number of 3D data frames that are recorded in the C3D file. Note that when the 3D
data has been derived from a video based system this value does not necessarily
correspond to the number of video frames in the original recording.

As a signed integer, this parameter has a possible range of –32768 to +32767 but
since the FRAMES parameter is always a positive number, the maximum frame count
is 32767. Since there is no reason to store negative values for this parameter, the
range can be extended by interpreting this parameter as an unsigned integer with a
range of 0 to +65535. The use of an unsigned value for the FRAMES parameter
would be flagged if the parameter returned a negative value when read as a signed
integer.

C3D files that contain
more that 32,767 frames of
data may not be readable
by some older software
applications.

The POINT:FRAMES parameter value is not stored in the C3D file header. However,
the frame numbers of the first and last 3D frames are stored words 4 and 5 of the
C3D file header – as a result, the POINT:FRAMES parameter value should always be
identical to the value:

last_frame – first_frame +1

Note that if the parameter POINT:FRAMES is interpreted as an unsigned integer than it
will be necessary to interpret the header frame numbers as unsigned integers.

LABELS
The POINT:LABELS parameter is a character data array that consists of one unique
four-character ASCII value for each 3D data point contained within the C3D file. By
convention, the parameters are usually four characters of upper-case standard ASCII
text (A-Z, 0-9). The contents of each LABEL (e.g. LASI, RASI, LTOE etc.) is
referred to as the point label and is used to reference each 3D point contained within
the C3D file data section.

In the original C3D file description (signed C3D), arrays use a signed byte as an
index. Signed bytes have a possible range of

C3D files that contain
more than 127 LABELS
may not be readable with
some older software
applications.

–128 to +127 but since the array index
is always a positive number, the maximum number of array entries is 127. Since
negative array indexes are illegal, the range of the array storage can be extended by
interpreting the index as an unsigned byte with a range of to 0 +255. The use of an
unsigned byte for the array index can be assumed if the array index appeared to be
negative when read as a signed byte.

The purpose of the LABELS parameter is to allow applications to search for a specific
3D point or trajectory by referencing its LABEL value instead of looking for a specific
trajectory number in a fixed list of trajectories. This allows applications to be written
in a general manner so that they can process data by reference e.g., calculate the
direction of progression from the 3D points identified as points LASI, RASI and SACR.
An application written in this way will work in any environment, as it does not
require that the 3D data is stored in any specific order within the C3D file.

The C3D File Format User Guide Required Parameters • 73

The 3D data points are stored
in the 3D data section in
the same order in which
they are stored in the

POINT:LABELS parameter can refer to a maximum of 127 3D data points in an
“unsigned C3D file” or a maximum of 255 3D data points in a “signed” C3D data
file. Note that a C3D file may contain more or less than the number of trajectories
described by this parameter. If the C3D file contains more trajectories (read the
parameter POINT:LABELS parameter. POINT:USED to determine the actual number stored in the 3D/analog data
section) than are described by POINT:LABELS parameters then the additional
trajectories must be referenced by number.

Note that while the POINT:LABELS are typically four upper case characters, some
applications may create labels that are larger. It is recommended that the
POINT:LABELS values are consistent within a set of data files.

DESCRIPTIONS
The POINT:DESCRIPTIONS parameter is a character data array that usually consists
of a short description of each 3D data point referenced by the POINT:LABELS
parameter. There should always be a one to one relationship between the number of
LABELS and the number of DESCRIPTIONS. By convention, these entries usually
contain upper and lower case ASCII characters and are typically 32 characters in
length but may be up to 127 characters long in a signed C3D file or 255 characters in
an unsigned C3D file.

Although it is not strictly required, it is good practice to include a C3D files that contain
more than 127
DESCRIPTIONS may not
be readable by some older
software applications.

DESCRIPTIONS
parameter for each point with a LABELS entry. Since this is an array of character
strings, the comments in the LABELS parameter description regarding the maximum
number of array entries also apply to this parameter. Signed C3D files cannot
contain more than 127 DESCRIPTIONS while unsigned C3D files may contain up to
255 . DESCRIPTIONS

This parameter exists to provide documentation about each of the individual 3D
POINT:LABELS, which are generally short abbreviations of anatomical or other
“landmarks” such as LASI, RKNE etc. These names generally have longer
POINT:DESCRIPTIONS such as Left ASIS Marker and Right Knee Marker.

UNITS
The POINT:UNITS parameter is a single four-character value that records the units of
distance measurement used by the 3D data e.g. mm, cm, m etc. POINT:UNITS is
typically four ASCII characters and may be upper or lower case. The common value
for this parameter is mm (millimeters).

Note that this parameter only records the units of measurement – it does not control
them and is not used in the 3D scaling calculations. Changing the value of
POINT:UNITS from “mm” to “cm” will not re-scale the coordinate system used to
generate the 3D data points unless this is a feature that is specifically implemented in
your software application.

The ANALOG group
The ANALOG parameters group provides information about the analog data stored
within a C3D file. As a result, the parameter ANALOG:USED should be stored in all
C3D files even if the file does not contain any analog data. C3D files that do not
contain analog data should set the value of the USED parameter to zero.

The original specification for analog data storage within the C3D file assumed that
data values were sampled by an Analog to Digital Converter (ADC) and then written

The correct handling of
unsigned 16-bit analog

74 • Required Parameters The C3D File Format User Guide

data values requires the
addition of two new
parameters to C3D files
that contain 16-bit data.

to the C3D file. The assumption was that the value stored in the C3D file would be a
signed 16-bit integer unless the C3D file used floating-point format, in which case
the signed 16-bit value would be converted to a floating-pint value before being
written to the file.

This method worked well for many years because the majority of analog data was
sampled at 12-bit resolution and programmers implementing analog storage
functions did not have to think too hard about the differences between storing signed
offset or unsigned offset data. The sampled values obtained from the ADC could
simply be written to the file as an integer value and any necessary scaling or format
conversions could be handled by creating the appropriate OFFSET parameters. It
made no difference whether the data was considered a signed integer or an unsigned
integer as all the possible unsigned values could be stored within the range of a
signed 16-bit integer.

This situation changed in two ways with the introduction of 16-bit analog data
samples:

• The potential for integer overflow exists when the ANALOG:OFFSET
parameter is applied to 16-bit resolution data.. This requires that all
math operations on analog data be performed with 32-bit integers to
handle any potential overflow when large analog data values are
encountered with large values. OFFSET

• The format used to store the analog data sample is significant. Before
the introduction of 16-bit ADCs, most analog data samples contained
12-bit data samples with a range of 4096 discreet values that could be
stored as either signed or unsigned integer values within the range of a
signed 16-bit integer. The introduction of 16-bit data samples changed
this and required that the analog values are stored as signed integers, as
required by the original C3D format description.

One major C3D application stores all analog data as unsigned integer values,
rendering the analog data unreadable to other applications that expect to read signed
integers from the C3D file. In order to work around this problem two additional
parameters (ANALOG:FORMAT and ANALOG:BITS) have been added to the C3D file
format description to document the analog sample format and measurement
resolution. These two parameters are “optional” in the sense that they are
unnecessary unless the analog data has been stored as unsigned integers.

It is strongly recommended that anyone storing 16-bit analog data in C3D files
follow the original C3D format description and store their data using signed integers
wherever possible. Care is needed when writing code to convert between signed and
unsigned formats or reading/writing all format variants.

The default storage format
for all analog data is
signed integer.

The parameters listed below should always be provided if the C3D file does contain
analog data. Other ANALOG parameters may be required by particular software
applications – consult your manufacturer’s documentation for details of application
specific parameters.

USED
The This parameter is Locked.

Extreme caution should be
exercised when editing this
parameter as it affects the
way that 3D/analog data is
stored.

ANALOG:USED parameter is a single signed integer value that records the
number of analog channels that are contained within the C3D file. The value stored
in ANALOG:USED is used to compute the analog data frame rate from the total
number of analog data words collected during each 3D frame. The total number of
ADC samples stored per 3D sample frame must be an integer multiple of

. ANALOG:USED

The C3D File Format User Guide Required Parameters • 75

The value of the ANALOG:USED parameter is not stored in the C3D file header but
can be calculated from two values that are stored in the C3D file header. The
ANALOG:USED parameter value is equal to C3D header word 3 divided by C3D
header Word 10.

As a signed integer, the parameter has a possible range of ANALOG:USED –32768 to
+32767. Since there is no conceivable requirement to store negative values for this
parameter, this range could be extended by interpreting this parameter as an unsigned
integer with a range of to 0 +65535. The use of an unsigned value for this parameter
would be flagged if the parameter returned a negative value when read as a signed
integer.

This means that in theory, C3D files that contain more than 32,767analog channels
may not be readable by some older software applications. In practice, it is unusual to
find analog hardware systems collecting more than 64 channels of analog data.

LABELS
The ANALOG:LABELS parameter is a character data array that consists of a unique
four-character ASCII (A-Z, 0-9) string for each analog channel contained within the
C3D file. This is referred to as the analog channel label and is used to reference
each channel of data contained within the C3D file data section in the order in which
the channels are stored. Labels are typically 4-30 characters long (4 upper case
characters is the default).

The purpose of the LABELS parameter is to allow applications to search for a specific
channel of data by referencing its LABEL value instead of looking for a specific
analog channel number. This allows applications to be written in a general manner
so that they can process data by reference e.g. analyze all the EMG channels where
they are identified as channels EM01 through EM32. An application written in this
way will work in any environment, as it does not require that the EMG signals be
stored on specific numbered ADC channels.

Note that while ANALOG:LABELS are typically four upper case characters, some
applications may create labels that are longer. If compatibility with older
FORTRAN based applications is required then LABELS should be only four
characters long.

As described in the original (signed) C3D specifications, this parameter can refer to a
maximum of 127 analog channels because the array index uses a signed byte.
However, unsigned C3D files may use an unsigned byte as an array index to extend
the number of

C3D files that contain
more than 127 analog
channel LABELS may not
be readable by some older
applications.

LABELS to 255. Any application that reads a negative array index for
LABELS should assume that the index is an unsigned byte.

Note that a C3D file may contain more or less analog channels than described by this
parameter. If the C3D file contains more analog channels than are described by
ANALOG:LABELS parameters then the additional analog channels must be referenced
by number.

DESCRIPTIONS
The C3D files that contain

more than 127
DESCRIPTIONS may not
be readable by some older
software applications.

ANALOG:DESCRIPTIONS parameter is a character data array that usually consists
of a short description of each analog channel referenced by the ANALOG:LABELS
parameter. There should always be a one to one relationship between the number of
LABELS and the number of DESCRIPTIONS. Although it is not essential, there should
generally be a one to one relationship between the number of LABELS and the number
of DESCRIPTIONS. By convention, these entries usually contain upper and lower
case ASCII characters and are typically 32 characters in length but may be up to 127

76 • Required Parameters The C3D File Format User Guide

characters long in a signed C3D file or 255 characters in an unsigned C3D file.

This parameter exists to provide documentation about each of the individual analog
channels. The ANALOG:LABELS parameter generally stores a short abbreviation of
each analog channel name such as 1FX, EM05 etc. Each of the channels referenced
by these LABELS generally has a longer ANALOG:DESCRIPTIONS such as Force Plate
One – Fx channel and Left Extensor Hallucis Longus etc.

Note that, like the POINTS:DESCRIPTIONS, the ANALOG:DESCRIPTIONS are provided
simply as a means of providing a human readable description or documentation of
the analog channel. Software applications that need to access individual analog
channels should access each channel by use of the , not the ANALOG:LABEL
ANALOG:DESCRIPTION parameter.

GEN_SCALE
The ANALOG:GEN_SCALE parameter is a single floating-point value that is used as a
universal analog scaling factor. It is applied in addition to the individual analog
channel scaling factors and acts on all channels. Common values for GEN_SCALE
are:

• 0.0048828 – the value of a single bit of data from a 12-bit ADC that is
measuring a ±10V input range. An individual channel ANALOG:SCALE
value would then be 1.00 to obtain the analog data scaled in Volts.

• 0.0024414 – the value of a single bit of data from a 12-bit ADC that is
measuring a ±5 input range. An individual channel V ANALOG:SCALE
value would then be 1.00 to obtain the analog data scaled in Volts.

• 1.00 – individual channel ANALOG:SCALE values must be set to
0.0048828 to obtain analog data scaled in Volts when sampled by a 12-
bit ADC that is measuring a ±10V input range, or 0.0024414 when
measuring with a ±5 ADC input range. V

• 0.062500 – upgrading a 12-bit data collection system to use a 16-bit
ADC requires only that the ANALOG:GEN_SCALE parameter change to
reflect the new resolution while retaining the original . If the system
used a value of 1.00 with a 12-bit ADC then changing the
ANALOG:GEN_SCALE parameter by a factor of 16 is all that is required
when the ADC card is upgraded to continue using the original 12-bit

 values unchanged. ANALOG:SCALE

Since the value of the ANALOG:GEN_SCALE parameter is used with the individual
ANALOG:SCALE values to calculate the correct value of each analog channel signal, it
is critically important that the ANALOG:GEN_SCALE value is not changed without
considering its effect on the individual ANALOG:GEN_SCALE values.

It is important to take into account the possible scaling ranges when selecting scaling
values. C3D files using an ANALOG:GEN_SCALE value of 1.000 will require
individual ANALOG:SCALE values of 0.0048828 to scale the output data in Volts, an
EMG application might require scaling in microvolts with corresponding

 value in the range of ANALOG:SCALE 0.0000048828 to 0.0000000048828, while the
force plate, scaled in Newtons would use values of 100 – 300.

The C3D File Format User Guide Required Parameters • 77

SCALE
The The calculation of the

correct
ANALOG:SCALE parameter is an array of floating-point values that must be

applied (together with the ANALOG:SCALE
value requires detailed
knowledge of the factors
that affect the analog
sample values.

ANALOG:GEN_SCALE parameter value) to convert the raw
analog data to real world values – normally the units described in the ANALOG:UNITS
parameter. As a result, it is essential that each analog channel have an associated
SCALE parameter together with an OFFSET parameter so that the correctly scaled
analog values can be calculated.

In the original C3D file description (signed C3D), arrays, such as ANALOG:SCALE,
use a signed byte as an index. Signed bytes have a possible range of –128 to +127
but since the array index is always a positive number, the maximum number of array
entries for ANALOG:SCALE is 127. Since negative array indexes are illegal, the range
of the array storage can be extended by interpreting the index as an unsigned byte
with a range of 0 to +255. The use of an unsigned byte for the array index can be
assumed if the array index appeared to be negative when read as a signed byte.

C3D files with more than
127 ANALOG:SCALE entries
may be unreadable by
some older software
applications.

To convert the analog signal to volts measured at the ADC inputs, the necessary
scale factor is given by the following expression:

resolutionADC
rangeADCSCALEANALOG

_
_: =

 The ANALOG:GEN_SCALE parameter may be used to apply an additional uniform
scale factor to all analog channels. In these discussions it will be assumed that
ANALOG:GEN_SCALE = 1.0 and therefore has no effect on the results although we will
show it in the calculations thus:

resolutionADC
rangeADCSCALEANALOGSCALEGENANALOG

_
:*: =

Since the two C3D file variables are both in the ANALOG group, this can be simply
stated thus:

SCALEGEN
resolutionADC

rangeADC
SCALE _

_
_

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

The ADC_range is the actual input range of the ADC card that is used to collect the
data. This is normally ±10Volts, which yields an actual ADC_range of 20 – that is
to say; the ADC card can record signals as over the range of 10 volts negative to 10
volts positive magnitude, a total range of 20 Volts.

The variable ADC_resolution is the total number of discrete measurement steps
available to measure the ADC input signal, which is related to the ADC precision.
An ADC with 12-bit precision can report the value of its input with a resolution of 1
part in 2

The ADC_resolution may
affect the ANALOG:OFFSET
parameter depending on
the encoding method used
to store the analog data.

12 – this translates to an ADC_resolution of 4096. Thus our equation can be
written:

00488281.000.1
4096
20

=⎟
⎠
⎞

⎜
⎝
⎛=SCALE

12In other words, when GEN_SCALE = 1.00 and the ADC has 12-bit precision (2) and
a 20Volt range, the individual value must beANALOG:SCALE 0.004883 to scale the
analog data in the C3D file in volts measured at the ADC input.

It’s worth noting that, calculated in this manner, the value 0.00488281 volts is the
minimum change in input voltage that is required to increase the ADC output count
by one. This is another way of saying that the smallest input voltage change that we

78 • Required Parameters The C3D File Format User Guide

can detect and record (for the configuration described above) is about 0.0049 volts or
mV – any signal change less than 4.9 4.9mV will not be recorded. This is a limitation

of the precision used by the ADC recording method, not something that is inherent in
the C3D file format.

There are two ways to increase the measurement sensitivity – either increase the
measurement resolution (i.e. use a 16-bit ADC with 216 bits of precision) or add
additional amplification to the input signal. Increasing the ADC precision usually
means changing hardware and software components of the data collection system
and generally affects all the analog channels. This can be both expensive and
technically challenging. As a result, the common method of increasing measurement
sensitivity is to add amplification to the input signal.

Many modern ADC devices have the ability to internally set gains of x1, x2, x4, and
x8 etc on individual analog channels within the device itself. The gain applied to
each analog channel internally will directly affect the ADC_range variable for each
channel. For instance, an ADC channel with a nominal ±10 volt input range and an
internal ADC_gain of x2 would have an effective input range of ±5Volts due to the
additional amplification. The internal ADC_gain for each individual analog channel
can be factored into the ANALOG:SCALE parameter thus:

SCALEGEN
gainADCresolutionADC

rangeADC
SCALE _

)_*_(
_

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Using the example of a ADC_gain of x2, will cause the ANALOG:SCALE parameter
calculated earlier to be reduced by a factor of 2, thus:

00244141.000.1
2*4096

20
=⎟

⎠
⎞

⎜
⎝
⎛=SCALE

In addition to the internal ADC_gain discussed above, many signal sources may have
additional amplification that needs to be taken into account – for example, an
electromyography system with an amplification of x5000 would produce an output
level of ±5 Volts from an input of ±1mV or ±0.001 Volt. This additional Gain can
also be factored into the individual ANALOG:SCALE calculations as follows:

SCALEGEN
GaingainADCresolutionADC

rangeADC
SCALE _

*)_*_(
_

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Calculating SCALE values for EMG systems
For example, to use a case from the real world, we will connect an external
electromyography channel with a Gain of x5000 to the ADC system that we have
previously described. We will continue to use the same GEN_SCALE value of 1.00.
Using this 12-bit ADC (internal resolution of 4096) with range of ±10 volts and a
gain of x2, produces an ANALOG:SCALE value of 0.0000004883

() 0000004883.000.1
5000*2*4096

20
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=SCALE

Clearly, the individual ANALOG:SCALE values can become very small when the
amplification factors are large – this is not always convenient, and under some
circumstances can result in significant loss of precision. For example, any
application that only read the first six decimal places of the ANALOG:SCALE factor
shown above would mistakenly determine the SCALE factor to be 0.000000 with the

The C3D File Format User Guide Required Parameters • 79

result that no analog data would be reported – review the analog scale calculations
above for details.

In all of the examples used above, the ANALOG:GEN_SCALE parameter has been
assigned a value of 1.00 – while this is convenient for the purposes of working these
examples, this value is a factor in each of the individual ANALOG:SCALE calculations.
As a result, these values can be re-scaled by using a different GEN_SCALE value.

For instance, the first calculation above to scale the analog C3D data in volts
measured at the ADC input used a GEN_SCALE value of 1.00 and produced a SCALE
value of 0.004883. If we recalculate the SCALE parameter using a GEN_SCALE value
of 0.004883, we obtain an individual ANALOG:SCALE of 1.00 in that example and the
prior calculation for an electromyography system now yields an ANALOG:SCALE
value of 0.00010006.

Calculating SCALE values for load cells
Many sensors produce an output in terms of units other than volts – in these cases, an
additional scaling factor must be applied to the scale calculation. This scaling factor
can be calculated once some basic information about the sensor is available. In this
example we will calculate the ANALOG:SCALE parameter for a load cell used to
measure tension and compression so that we record the output in the same units that
are used to calibrate the load cell. For this example we will use a Sensotec, Inc.,
model 31 Load Cell rated at 50lbs. The load cell performance sheet provides the
following information for this device:

Output 2mV/V
Excitation 10.0 VDC

The load cell output is specified in terms of volts output per volt of excitation at full
load. In this case, the manufacturer specifies a 10.0 Volt excitation voltage, so the
load cell output will be 20mVat full load, which, for this load cell, is 50 pounds. We
now have enough information to calculate the sensor calibration factor:

0004.0
50

10*002.0*
==

Range
ExcitationOutput

This sensor calibration factor can be using in the basic ANALOG:SCALE calculation to
produce data values scaled directly in pounds:

0004.0_
)_*_(

_
SCALEGEN

gainADCresolutionADC
rangeADC

SCALE ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Assuming a GEN_SCALE value of 1.00, a 12-bit ADC (internal resolution of 4096)
with range of ±10 volts, and a gain of x1, this produces an ANALOG:SCALE value of
12.207 that, at a quick glance, appears to be correct. However the sensor output is,
even at maximum load, very small and as a result, we have very poor resolution
using this sensor and ADC combination. The smallest change in tension or
compression that can be recorded is one bit of ADC data – which, in this case, is
about 12.2lbs. In order to achieve a reasonable measurement resolution additional
gain is required to amplify the output from the sensor to match the full ADC
measurement range – this will, in turn, affect the ANALOG:SCALE parameter value.

Many modern ADC sampling devices can be programmed to use different input
ranges by changing the ADC gain. If we use an ADC_gain of x8 in the above scale
calculations, we can improve the measurement resolution to about 1.5 lbs. This
resolution can be further improved by adding an additional gain stage in between the
load cell and the ADC.

80 • Required Parameters The C3D File Format User Guide

Calculating SCALE values for force plates
The method used for calculating the SCALE values for force plate channels depends
on the force plate type as recorded by the parameter FORCE_PLATFORM:TYPE. The
C3D parameters described here accommodate two types of force plate, eight-channel
piezo-electric force plates (e.g. Kistler), and six-channel strain gauge force plates
(e.g. AMTI, Bertec and Kyowa-Dengyo).

A strain gauge force platform manufacturer will typically supply data with each
force plate that describes how the values measured are affected by the applied forces
and moments. This information may be in the form of a single value for each output
channel, or alternatively as a matrix of values, which describes how every channel
affects every other channel. If we use only the diagonal entries from the calibration
matrix then we are ignoring cross-talk terms, which are usually quite small when
compared to the elements on the matrix diagonal, and we have just a single
sensitivity value for each channel. This is the method used for the six-channel force
plates that will be describe first since they are the most widely used.

The C3D format defines a number of different force plate types to enable the stored
analog data from each type to be treated appropriately. TYPE-1 plates have three
force outputs (Fx, Fy and Fz) and an M and center-of-pressure output (Pz x and Py).
TYPE-2 plates provide three force outputs and three moment outputs (Mx, My, Mz)
and scale these signals using a single scaling factor applied to each analog channel.
TYPE-3 force plates provide force outputs from the force plate corners while TYPE-4
force plates are similar to TYPE-2 but use the entire cross-talk matrix to scale the
output data.

As an example, let us assume that the sensitivity matrix supplied by the manufacturer
of a

TYPE-2 force plates provide
three force and three
moment outputs.

TYPE-2 force plate is:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−

−
−

−−
−−

562.2002.0004.0009.0001.0004.0
000.0361.1000.0011.0005.0008.0
001.0004.0352.1008.0001.0015.0
001.0009.0001.0170.0011.0010.0
007.0006.0003.0000.0642.0001.0
005.0000.0009.0009.0003.0643.0

The matrix is ordered as Fx, Fy, F , Mz x, My, Mz with all values in terms of microvolts
produced per Newton per volt of excitation. Since this is a strain gauge force plate,
the actual output level from each channel is dependent on the excitation voltage
applied to the strain gauge bridge. Typically, the excitation voltage (ex in the
equation below) is in the range of five to ten volts.

If a matrix was not supplied then we would be given just the six major diagonal
elements from top left to bottom right which are the only parts of the matrix that are
used in calculating the SCALE values for TYPE-1 and force plates. TYPE-2

The ANALOG:SCALE value for the first channel (Fx above), will be given by the
expression:

SCALEGEN
Fexgainresolution

rangeVoltage
SCALE

x
_1000000*

_

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Where Voltage_range is the ADC input range, resolution is the ADC resolution, ex
is the platform excitation voltage, and gain is the gain set on the force platform
amplifier for that particular channel (in this example, x4000). The calculated result

The C3D File Format User Guide Required Parameters • 81

must be multiplied by 1000000 since the calibration matrix values are supplied in
microvolts (μV). Note that different channels may have different Voltage_range and
gain values. These will depend on the type of hardware, and the hardware and
software settings in effect when the data were collected. As with all analog SCALE
values, the GEN_SCALE parameter is included in the calculation:

1898.000.11000000*
643.0*10*4000*4096

20
=⎟

⎠
⎞

⎜
⎝
⎛=SCALE

The application of this scale factor to the raw analog data (see the analog scale
calculations for details) will result in an output having the units of Newtons applied.
Note that you must enter all force plate ANALOG:SCALE factors as negative values to
produce an output in terms of reactive force.

If the calibration values are supplied in units of Newton-meters per volt for the force
moments, and the measurement units specifying the locations of your reference
markers are in millimeters, then you must convert the values referring to moments to
Newton-millimeters per volt. This conversion is achieved by multiplying the
ANALOG:SCALE results for the moment channels by 1000.

TYPE-3 force plates provide
eight force outputs.

TYPE-3 force plates (Kistler piezo-electric plates) do not use a cross-talk matrix, or
produce any moment outputs. Instead, these plates provide eight force channels with
outputs that are measured using electrical charge in terms of pico-columbs (pC) per
Newton applied.

The ANALOG:SCALE values for TYPE-3 force plate are calculated using information
provided by the manufacturer about the sensitivity of the force plate transducers,
together with the, user-controlled, channel gains of the charge amplifier supplied
with each force plate. TYPE-3 plates produce three sets of force output signals, each
with a separate calibration value – these are Fx1-2, Fx3-4 and Fy1-4, Fy2-3 together with
Fz1, Fz2, Fz3, Fz4. Each force plate is supplied with three separate calibration values
that apply to the Fx, Fy, and Fz channels e.g.

Fx 7.87 pC per Newton

Fy 7.85 pC per Newton

Fz 3.89 pC per Newton

Using the example above with a calibration of 7.87 pC/N and a charge amplifier
range of 5000pC (fs_range) for a 10 volt output yields a scale factor would be:

SCALEGENgain
rangefs

ncalibratioresolution
rangeVoltage

SCALE _
10

_
*

*
_

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛=

Where resolution is the ADC resolution (4096 for a 12-bit ADC), Voltage_range is
the ADC input range, and gain is the individual analog channel gain (if any). With a
GEN_SCALE of 1.00 this gives:

310217.000.11
10

5000*
87.7*4096

20
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=SCALE

Thus, the Fx SCALE value is 0.310 Newtons per volt, which is entered as a negative
value to produce an output in terms of reactive force.

82 • Required Parameters The C3D File Format User Guide

TYPE-4 force plates are a
special case of

TYPE-4 force plates are mechanically and electrically identical to TYPE-2 force plates
but use the entire calibration matrix to calculate their output. As a result, the output
from a

 TYPE-2
plates that use a slightly
different cross-talk
correction method.

TYPE-4 plate is slightly more accurate then when only the major diagonal
information is used. The ANALOG:SCALE parameters for TYPE-4 plates are calculated
as follows:

SCALEGEN
exgainresolution

rangeVoltage
SCALE _1000000*

**
_

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

The calibration matrix (the inverse matrix of the sensitivity matrix used by TYPE-2
force plates) should be entered in the FORCE_PLATFORM:CAL_MATRIX parameter.
The conversion from volts to Newtons will occur when the calibration matrix is
applied to the data as an additional step – see page 94 for details.

12207.000.11000000*
10*4000*4096

20
=⎟

⎠
⎞

⎜
⎝
⎛=SCALE

Note that different force plate channels may have different voltage ranges and gains.
These will depend on the type of hardware, and the hardware and software settings in
effect when the data were collected. If the calibration values are supplied in units of
Newton-meters per volt for the force moments, and the measurement units
specifying the locations of your reference markers are in millimeters, then you must
convert the values referring to moments to Newton-millimeters per volt. This
conversion is achieved by multiplying the last three rows of the calibration matrix by
1000.

A sensitive test of the force plate performance may be carried out using a stick about
one meter long with two markers at locations a short distance from either end. After
the video system has been fully calibrated, force and 3D data is collected while one
end of the stick is placed on the force platform and a force directed along the stick is
applied to the upper end of the stick. The upper end of the stick should be moved
while the force is continually applied in order to create varying angles of the stick
with the FP surface. If the force platform is correctly set up, the force vector and a
line joining the two markers should coincide for the full range of motion of the stick.

This simple test is available
in a commercial package
that uses a test device
(MTD-2) and software
(CalTester) to provide a
report of the force plate
performance.

OFFSET
The ANALOG:OFFSET parameter is an array of integer values that are subtracted from
each analog measurement before the individual ANALOG:SCALE scaling factors are
applied. By default a signed integer, the ANALOG:OFFSET values may be either
positive or negative numbers in the range of –32768 to +32767 and can include the
value of zero. However, if the ANALOG:FORMAT parameter is “ ” then the UNSIGNED
ANALOG:OFFSET parameter must be interpreted as unsigned integer numbers in the
range of to 0 +65537.

There must always be a one to one correspondence between the ANALOG:SCALE and
 parameters. Both the ANALOG:OFFSET SCALE and OFFSET parameters must exist for

every analog channel up to the value stored in the parameter. ANALOG:USED

The sampled analog data is normally stored in the C3D file as signed integer values
within the range of

Always check the value of
the ANALOG:FORMAT
parameter to determine if
the OFFSET is a signed or
unsigned integer value.

-32768 to +32767. It’s worth noting at this point that the precise
binary encoding method for analog data is not specified within the C3D format
specification and, so long as the scaled results are correct, analog data can be stored
anywhere within the range of the integer data type.

The C3D File Format User Guide Required Parameters • 83

In general, the analog data is encoded over a symmetrical range (from a value of +v
to –v) but this is not an absolute requirement. Several software applications write the
raw analog data samples as unsigned values and use the OFFSET parameter to
convert them to back to signed values when the data is scaled into real-world values.

The table shown below illustrates two common encoding methods used to represent
both positive and negative values in C3D files.

Scale Offset Binary Two's Complement

+ Full Scale 1111 … 1111 0111 … 1111

+ 0.75 Full Scale 1110 … 0000 0110 … 0000

+ 0.50 Full Scale 1100 … 0000 0100 … 0000

+ 0.25 Full Scale 1010 … 0000 0010 … 0000

0 1000 … 0000 0000 … 0000

– 0.25 Full Scale 0110 … 0000 1110 … 0000

– 0.50 Full Scale 0100 … 0000 1100 … 0000

– 0.75 Full Scale 0010 … 0000 1010 … 0000

– Full Scale + 1 LSB 0000 … 0001 1000 … 0001

– Full Scale 0000 … 0000 1000 … 0000

Figure 28 – Binary data formats

Offset Binary is a simple binary count that is offset in order to represent equal
magnitude over the positive and negative ranges – the maximum negative range
being all zeros while all ones represents the maximum positive range. The mid-
range or zero is represented by setting the most significant bit, with all other bits
cleared. Two’s Complement Binary uses a simple binary count to represent all
positive values while all negative values are stored with the most significant bit set.
The Two’s Complement format simplifies the interface at a machine code level but
offers no advantages within the C3D format or within high-level languages. It is a
common output option for many Analog to Digital Converter (ADC) devices.

The ANALOG:OFFSET
parameter may contain a
negative value if an
application has written it
as an unsigned integer
value in error.

Software applications must always use the and OFFSET SCALE parameters to
determine data magnitude and must not assume that either or OFFSET SCALE will
take any particular value.

ADC resolution Signed OFFSET Unsigned OFFSET

8-bits 0 127

12-bits 0 2047

14-bits 0 8191

16-bits 0 32767

Figure 29 – Typical ANALOG:OFFSET values.

Typically, an analog-to-digital converter (ADC) has 12 to 16 bits of resolution, and
can capture and store analog data using signed integer values from -32768 to +32767
representing both positive and negative input signal excursions. In order for
software applications to correctly translate the analog data recorded in the C3D file
into real world values, the and ANALOG:OFFSET ANALOG:SCALE parameters must
contain appropriate values. These are applied as shown:

real world value = (data value – ANALOG:OFFSET) * ANALOG:SCALE

84 • Required Parameters The C3D File Format User Guide

For example, a ±5 volt ADC with 12-bits of resolution can produce 4096 discreet
samples values – these may be mapped as unsigned values using the range of to 0
+4095 (in which case the would be OFFSET +2047 for a symmetrical to +5 –5 volt
range, translating the ADC samples into the signed integers). They could equally
well be mapped directly as signed integers in the range of –2048 to +2047 in which
case the would be 0. If the OFFSET ANALOG:SCALE and OFFSET values are applied
correctly, both configurations will return identical values covering the range of to +5
–5 volts.

One application of the ANALOG:OFFSET is to adjust the zero baselines for devices
such as force plates that should return a zero when unloaded. In practice, force
plates are notorious for drifting away from an unloaded zero value, which can lead to
measurement errors in use. There are two common methods for “zeroing” these
devices, both involve determining the measurement error during some period of
unloaded sampling, by subtracting the sampled data values from the recorded

 value. This result can then be used to reset the ANALOG:OFFSET ANALOG:OFFSET
parameters to new values (each analog channel will have a different “error” value
here) or, can be used to adjust the sampled analog data values or correct the original
offset measurement error. Both methods are in common use; both methods may run
into problems if either the analog data or OFFSET parameters are close to their limits.

UNITS
The ANALOG:UNITS parameter is an array of character data values (normally each
value is 4 characters in length). This parameter records the analog measurement
units for each channel (e.g. V, N, Nm). The units should describe the quantities after
the scaling factors are applied – as a result, there should always be one
ANALOG:UNITS entry for a total of channels. ANALOG:USED

Note that changing the ANALOG:UNITS parameter does not automatically affect the
calculated analog values, as it is not used in the analog scaling calculations. You
must change the ANALOG:SCALE parameter to re-scale the analog data.

RATE
The This parameter is Locked.

Extreme caution should be
exercised when editing its
value as it affects the way
that 3D/analog data is
stored.

ANALOG:RATE parameter is a single floating-point value that records the sample
rate at which the analog data was collected in samples per second. This indicates the
number of analog samples that exist in each analog channel for the given
POINT:RATE value. THUS, an ANALOG:RATE value of 600 for a C3D file that
contains data with a POINT:RATE of 60.00 has 10 analog samples per 3D sample (60
x 10).

The RATE parameter value is not stored in the C3D file header. However, the header
does record the 3D sample frame rate in words 11-12 as well as the number of
analog samples per 3D frame in word 10. The ANALOG:RATE parameter value
should always be identical to the value:

3D_frame_rate * analog samples per frame

THUS, an ANALOG:RATE will have a value of 600 in a C3D file with a POINT:RATE
value of 60 that contains 10 samples of analog data per 3D frame. Note that
although the C3D format specified that the number of analog samples per 3D frame
must be an integer number, the actual 3D frame rate is a floating-point value since it
may not be exact. Therefore, the ANALOG:RATE (from the above calculation) must
also be stored as a floating-point value.

Note that a single ANALOG:RATE value applies to all analog channels – the C3D file
format requires that all analog channels be recorded at a single rate. This means that

The C3D File Format User Guide Required Parameters • 85

if the C3D file is used to store analog data from a variety of different sources, all
analog signals must be sampled at the rate required by the source with the highest
frequency components.

FORMAT
The If the ANALOG:FORMAT

parameter does not exist
then assume that its value
is SIGNED.

ANALOG:FORMAT parameter is a character data array that consists of a single
ASCII (A-Z, 0-9) string that documents the analog data format used within the C3D
file. The parameter has two possible values: or SIGNED UNSIGNED. This specifies
whether the 'data' format (rather than the 'storage' format) is 2's compliment or offset
binary respectively. This parameter applies to all analog data values within the 3D
and Analog data section. It should normally be “locked”.

If the ANALOG:FORMAT parameter contains the string “SIGNED” then the C3D
'storage' format for both the data samples and the ANALOG:OFFSET parameters must
also be “SIGNED”. This is the default storage method for all analog data values,
irrespective of resolution and allows data to be stored using signed integer values
from -32768 to +32767 representing both positive and negative input signal
excursions.

If the ANALOG:FORMAT parameter contains the string “ ” then the UNSIGNED
 parameters must also be treated as “UN ” values. ANALOG:OFFSET SIGNED

If the ANALOG:FORMAT parameter does not exist the it should be assumed that its
value is unless the analog data contains 16-bit values, in which case SIGNED

 is a possibility. UNSIGNED

BITS
The ANALOG:BITS parameter is a single integer value that describes the analog data
sample resolution and will normally contain one of three values, 12, 14 or 16. As
this value directly affects the interpretation of the analog data it should normally be
“locked”. If the parameter does not exist then it is usually safe to assume that its
value is 12. Alternatively, its value can be measured by reading every analog sample
contained in the 3D/Analog data section and determining the effective resolution
from the highest analog data value found.

Software applications that change the resolution of analog data values for
compatibility (i.e. down sampling 16-bit data to 12-bits) should always update this
parameter to indicate the resolution of the data stored within the C3D file as it can be
used to allow software applications to recalculate the ANALOG:SCALE parameter
values.

The FORCE_PLATFORM group
Force-plates are used to measuring forces and moments – typically the ground
reaction forces and moments produced by human gait although other applications
exist. The FORCE_PLATFORM group is used to store information about the type,
location, and implementation of the force plates within the data collection
environment.

86 • Required Parameters The C3D File Format User Guide

The Note the spelling of this
parameter – one software
application saves these
parameters in the

FORCE_PLATFORM group must be present whenever a C3D file contains analog
data from force platforms. It describes the type of force platforms used, their
locations within the calibrated 3D data recording volume, the assignment of force
plate signals to specific analog channels as well as storing the force plate calibration
data required to calibrate the platform or interpret the force platform signals. This is
one of the more complex parameter groups to set up but, in general, it is usually only
done once for any given data collection configuration. Once it has been setup
correctly, it need not be changed unless the force plates change their location within
the calibrated 3D data collection volume.

FORCE_PLATEFORM group.
This can cause problems
for applications that
expected the correct
parameter name.

Since many applications use the parameters from this group to determine if force
plate data exists in the C3D file it is a good idea to include the parameter
FORCE_PLATFORM:USED with a value of zero even if no force plate data is present.
This will enable other applications to determine that the C3D file does not contain
any force platform data.

The C3D file format allows force platform information to be recorded in any analog
channel. There is no requirement that force platform data be ordered in any specific
way in the recorded analog data as the FORCE_PLATFORM:CHANNEL parameter is
used to specify the correspondence between recorded analog data channels (1, 2, 3
etc) and force platform channels (e.g.). Fx, Fy, Mz

The physical location and orientation of the force platform within the 3D data
collection space is defined by the FORCE_PLATFORM:CORNERS parameter. This
parameter provides information about the location of the corners of the platform in
3D space and the order in which the corners are specified provides the rotational
alignment between the 3D co-ordinate system and the force plate co-ordinate system
as well as information to compute the locations of force vectors, center of pressure,
etc., in the calibrated 3D space.

Analog data from the force platforms is scaled using the Care must also be taken to
connect the force plate
signals to the analog inputs
using the correct order and
polarities. Unpredictable
results can be caused if the
analog channel assignment
does not match the force
plate channels described in
the parameters.

ANALOG:GEN_SCALE,
,ANALOG:SCALE and ANALOG:OFFSET parameters that are applied to the raw analog

data before its use in the force plate computations. The raw analog data is stored
within the C3D file within the range of the range of the recording hardware (the
ADC card) e.g., -5 volts to +5 volts, or 0 volts to +10 volts. The ANALOG:OFFSET,
SCALE and GEN_SCALE factors are used to convert the recorded raw analog data to
force and moment values while the OFFSET is simply the raw data value
corresponding to 0 volts of input. The ANALOG:OFFSET value is subtracted from
each analog data value before the scale factor for the channel is applied.

Two values must be determined before it is possible to calculate the scale factors for
each force plate channel. These are the force plate sensitivity value, and the ADC
sensitivity value:

• Each individual force plate output channel has a value associated with
it by the manufacturer that expresses the sensitivity of the channel –
generally in terms of the amount of force required to produce one volt
of output or the moment that must be applied to the plate to produce
one volt of output. This information is usually available from the
manual supplied by the force plate manufacturer.

• The ADC sensitivity value is expressed in units of volts per bit, where a
bit is a raw analog data unit (4095 bits will correspond to full scale for
a 12-bit ADC). Note that the ADC sensitivity depends on both the
hardware range setting of the ADC as well as any gains that are applied
to the signal, in either hardware or software before the data is recorded.

The C3D File Format User Guide Required Parameters • 87

If the force plate sensitivity for a given channel is , and the ADC sensitivity is S A,
then the value to enter into the parameter for that channel is ANALOG:SCALE A*S, i.e.
the units for the scale factor parameter must be force/bit or moment/bit. If the
parameter ANALOG:GEN_SCALE is not set to 1.0, then the value of A must be first
divided by the value used in ANALOG:GEN_SCALE (see page 77).

Alternately, the ANALOG:GEN_SCALE parameter may be set to the value of A, then the
 factors can be set to the values of ANALOG:SCALE S for each individual channel to

provide the desired result. Care must be taken to use consistent units, i.e. if force is
being expressed in Newtons, the moments should be in Newton-millimeters (Nmm)
or Newton-meters (Nm).

A full discussion of all the factors involved in calculating analog scaling factors can
be found if the discussion of the analog SCALE parameters on page 81 – please refer
to this chapter for complete details (including worked examples) of the calculations.

USED
The The value of USED sets the

minimum array size of
other parameters in this
group.

FORCE_PLATFORM:USED parameter is a single signed integer value that records
the number of force platforms for which analog data and parameters exist in the C3D
file. This may contain any value between and 0 32,767 although it is possible that
some applications will have problems interpreting data from large numbers of force
platforms. Most applications seem to support at least four force plates.

If FORCE_PLATFORM:USED is set to zero, then the remaining force platform
parameters are not valid. It is important that the USED parameter exists even when
the C3D file does not contain any force platform information – this allows older
software applications reading the C3D file to determine that force platform
information does not exist.

TYPE
The FORCE_PLATFORM:TYPE parameter is an array of signed integers that define the
type of force platform output expected from each force platform. The TYPE array
size must be equal to or greater than the value of the FORCE_PLATFORM:USED
parameter. Initially, the C3D specification supported three force platform types (1-
3), with the Type-4 platform added in the early 90’s to support the inclusion of the
full force plate calibration matrix. Since that time various manufacturers have added
further force platform descriptions as the need arises.

The following force platform types are described in the C3D specification:

TYPE-1
The force platform outputs , into the first three channels, FX, FY, FX PX, PY (the
locations of the center of pressure) in the next two channels, and MZ (the free
moment about the Z-axis) to the sixth channel.

Note that TYPE-1 force plates are uncommon and very few third party software
applications appear to support them. As a result, this manual does not document
them. If you have a TYPE-1 force plate, and can provide sample force plate data and
calibration information then please get in touch with the C3D community via email
at info@c3d.org.

88 • Required Parameters The C3D File Format User Guide

mailto:info@c3d.org

TYPE-2
The force platform outputs, FX, FY, FZ go to the first three channels, and the
moments MX, MY, MZ go to the next three channels e.g. AMTI and Bertec force
plates.

TYPE-3
The force platform has eight analog outputs, which are combinations of the FX, FY,
and FZ measured at the corners of the force platform e.g. Kistler force plates.

TYPE-4
This force platform is the same as a Type-2 force platform except that a calibration
matrix is being provided for it via the CAL_MATRIX parameter. For a Type-4 force
plate the SCALE parameter should convert the analog data to volts only because the
calibration matrix is applied in an additional step to convert volts to force and
moment units.

Note that some older applications may not recognize Type-4 plates correctly. These
applications will usually work correctly (although with reduced accuracy) by
specifying the FORCE_PLATFORM:TYPE as a Type-2 plate and editing the associated
ANALOG:SCALE parameters. If in doubt, consult your application vendor or
manufacturer documentation.

TYPE-5
This force platform is a portable eight channel platform manufactured by AMTI and
is supplied with a 6 by 8 calibration matrix. The force platform analog outputs are
Cz, Dz, Az, Bz, Yac, Ydc, Xab, Ybd. The CAL_MATRIX parameters scale the analog
data from volts to Newtons.

TYPE-6
This force platform is a twelve channel plate that provides separate X,Y,Z output at
each corner via analog channels Fx1, Fy1, Fz1, Fx2, Fy2, Fz2, Fx3, Fy3, Fz3, Fx4,
Fy4, Fz4. The CAL_MATRIX parameters is a 12x12 matrix that scales the analog
data from volts to Newtons.

TYPE-7
The Type-7 force platform is a Type-3 Kistler platform with a calibration matrix for
the standard eight Kistler analog signals (Fx12, Fx34, Fy14, Fy23, Fz1, Fz2, Fz3,
Fz4). The CAL_MATRIX parameter is an 8x8 matrix that scales analog data from
volts to Newtons. An additional parameter FORCE_PLATFORM:FPCOPPOLY is
expected with a 2x6 matrix containing polynomial correction factors for the center of
pressure data.

TYPE-11
An eight channel Kistler Split Belt Treadmill (split bilaterally) force platform with
Fx12, Fx34, Fy14, Fy23, Fz1, Fz2, Fz3, and Fz4 analog outputs. The CAL_MATRIX
parameter is an 8x8 matrix that scales analog data from volts to Newtons. Three
additional parameter are required to support this plate – these are:

FORCE_PLATFORM:FPCOPPOLY which contains a 2x6 matrix containing polynomial
correction factors for the center of pressure data.

The C3D File Format User Guide Required Parameters • 89

FORCE_PLATFORM:FPCOPTRANS a 1x2 parameter that containing an addition
translation of the COP along the surface of the platform.

FORCE_PLATFORM:FPCOPTOR is an additional parameter that describes the rotation
of the center of pressure about an axis perpendicular to the surface of the force
platform.

TYPE-12
The Type 12 force platform describes the Gaitway treadmill which has anterior and
posterior platforms on the treadmill. Each platform of the treadmill contains four
vertical force channels. All eight channels are defined for the force platforms. To
distinguish the left and right plates the ORIGIN parameter is interpreted as the
parameters a, c, d as defined in the Gaitway manual. A negative value in a means the
left side is being computed. Each platform has eight channels, Fz11, Fz12, Fz13,
Fz14, Fz21, Fz22, Fz23, and Fz24. The CAL_MATRIX parameter is an 8x8 matrix that
scales analog data from volts to Newtons while an additional parameter
FORCE_PLATFORM:GAITWAY_MIDLINE describes the midline for bisecting the two
new pseudoplatforms into left and right sides.

TYPE-21
AMTI-Stairs - four interlocking stairs attached to two treadmills. The platform has
six analog channels Fx, Fy, Fz, Mx, My, and Mz and is supplied with a calibration
matrix entered as the CAL_MATRIX parameter, a 6x6 matrix that scales analog data
from volts to Newtons and Newton-millimeters. Note that the C3D format assumes
that all units are consistent. If the POINT data are stored in units of millimeters, the
moment channels should be scaled to Newton-millimeters. Two additional
parameters describe the location of the platform superstructure – this are
STEP1_CORNERS which contains the (x,y,z) coordinates of the first step corners in
the laboratory coordinate system and STEP2_CORNERS, containing the (x,y,z)
coordinates of the second step corners in the laboratory coordinate system.

ZERO
The The ZERO parameter is

always specified in terms of
valid 3D frame numbers
for the file in question. It is
never specified in terms of
analog samples.

FORCE_PLATFORM:ZERO parameter is an array that contains two non-zero
signed integer values. These specify the range of 3D frames that may be used to
provide a baseline for the force platform measurements. Most software applications
seem to set the range to 1,10 although other ranges are acceptable and some
applications may specify a range of 0,10, which should be interpreted as a range of 1
to 10 since the C3D file does not have a 3D frame number 0.

This allows any application that reads the force plate data to read in the analog data
for the given frames, find the mean for each channel, and subtract it from the analog
data for the corresponding channel as it is accessed for force platform displays. If
the two frame numbers provided are both zero then no baseline-offset correction
should be applied - any other value defines a range of 3D frames.

Note that the presence of this parameter does not mean that any baseline correction
will be performed – only that if it is performed it should use these values. If you do
implement baseline correction in an application then you must be careful to ensure
that the baseline correction is only applied to the specified force plate channels and
that the force plates are unloaded during the frame rage specified by the parameter.

90 • Required Parameters The C3D File Format User Guide

CORNERS
The parameter is an array (3,4,FORCE_PLATFORM:CORNERS USED) of floating-point
values that record the locations of the force platform corners in the reference
coordinate system, measured in POINT:UNITS. This is used by any graphics
application to draw the force platforms, force vectors, and center of pressure
information in the correct locations relative to the 3D point data.

The first dimension specifies the X, Y, or Z coordinate, and the second dimension
specifies the corners. The corners are numbered from 1 to 4 and refer to the quadrant
numbers in the X-Y plane of the force platform coordinate system (not the 3D point
reference coordinate system). These are +x +y, -x +y, -x -y, and +x -y, with respect
to the force plate coordinate system.

Figure 30 – The C3D force plate coordinate order.

The third dimension of the array (CORNERS USED) must be equal to or greater than
the value of the parameter. FORCE_PLATFORM:USED

ORIGIN
The FORCE_PLATFORM:ORIGIN parameter is an array (3,USED) of floating-point
values whose interpretation depends on the type of force plate used (as set by the
TYPE parameter). You should be able to find all the information that you need to
calculate the correct ORIGIN values in the appropriate force plate manual supplied by
the force plate manufacturer.

The ORIGIN vector is set up to enable the transformation of the force vectors as
measured by the transducers, to the laboratory coordinate system via the center of the
working surface (whose location is made known through the CORNERS parameter).
The manufacturers’ force platform coordinate system really depends upon the signals
that are output from the transducers, and may need to be modified to provide a
standard right-handed coordinate system, which ORIGIN is assumed to be. Assuming
a left-handed coordinate system will change the sign of one of the components.

All ORIGIN distance units must be the same as were used to express the locations of
the FORCE_PLATFORM:CORNERS in the 3D coordinate system. It is important to note
that every distance in a C3D file must be expressed in the same units.

TYPE-1
For a Type-1 force platform only the third component is used, while ORIGIN(1,) and
ORIGIN(2,) are ignored. ORIGIN(3,) must contain the displacement from the force

The C3D File Format User Guide Required Parameters • 91

plate coordinate system origin to the working surface of the force platform.
Normally the force plate coordinate system origin is below the surface of the
platform and the coordinate system z-axis is directed downwards, so that the sign of
the distance entered in ORIGIN(3,) will be negative.

TYPE-2
For a Type-2 force platform, this parameter must hold the components of the vector
pointing from the origin of the FP coordinate system to the point at the geometric
center of the force platform working surface. This vector must be expressed in the
force platform coordinate system.

The vector locates the center of the working surface of the force plate within the
force plate coordinate system. The Z component of this vector should be negative.
Please note that the AMTI documentation has the opposite sense of this vector. The
force plate offset vector should locate the center of the working surface of the plate
relative to the force plate measurement origin and in the force plate coordinate
system. The direction of the force plate coordinate system axis (Z axis) that is
normal to the working surface of the force plate (usually the vertical axis but the
force plate could be on its side) is directed away from the working surface of the
force plate. Thus, you must travel in a negative Z direction in the force plate
coordinate system to reach the working surface.

At the time of writing, applications written by one well known motion capture
system do not store the correct ORIGIN value for TYPE-2 force plates. Instead, C3D
files are generated using the supplied FP values. This will produce significant errors
in any application that calculates center of pressure, power, and moments as these
calculations will assume that the force plate is mounted above the force surface,
based on the incorrect Z ORIGIN value.

 Supplied FP values ORIGIN parameter values

X 3.9 -3.9

Y -4.6 +4.6

Z 40.2 -40.2

Figure 31 – Force platform ORIGIN values

The AMTI documentation locates the force plate origin relative to the middle of the
working surface and reports this vector in the force plate coordinate system.
Therefore, the C3D file and AMTI values should be equal and opposite as shown
above.

The origin of the force plate coordinate system is determined by the positions and the
gains of the transducers and may not lie exactly below the center of the force
platform surface.

TYPE-3
For a Type-3 force platform, these values record the sensor offsets. ORIGIN(1,) must
contain the distance between the transducer axes and the force platform . y-axis
ORIGIN(2,) must contain the distance between transducer axes and the force platform
x-axis. ORIGIN(3,) should contain the distance between the force plate origin and the
surface of the force platform. Since the force platform z-axis projects down, this
value will normally be negative as it records the distance within the force plate
coordinate system.

92 • Required Parameters The C3D File Format User Guide

Refer to the manufacturer’s specifications for the force platforms being used – for
most plates, you can assume that ORIGIN(1,) is half inter-transducer distance in x-
direction (shown as a below) and ORIGIN(2,) is half inter-transducer distance in y-
direction (shown as b below). ORIGIN(3) can be a little harder to find but will be
provided in the manufacturer’s documentation. Remember that all distance units
must be the same as were used to express the locations of the 3D points in the
laboratory coordinate system.

Figure 32 – ORIGIN data for eight channel force platforms.

TYPE-4
A Type-4 force platform records the FORCE_PLATFORM:ORIGIN parameter in exactly
the same way as a Type-2 force platform. The ORIGIN parameter must hold the
components of the vector pointing from the origin of the FP coordinate system to the
point at the geometric center of the working surface of the force platform. This
vector is always expressed in the force platform coordinate system.

CHANNEL
The parameter is an array of signed FORCE_PLATFORM:CHANNEL integer data values
that record which analog channels contain specific force platform data. The force
platform outputs may be connected to any convenient analog input channels in any
order that is convenient to the user, provided that the assignment of force platform
signals to analog channels is correctly specified in this parameter.

While it is recommended that force plate channels be connected to the analog
recording device in a logical fashion it is not essential that they are stored in any
fixed order within the C3D file. Any application that reads force plate data must use
this parameter to determine the force plate channel to analog channel assignments.

 TYPE-1 TYPE-2 TYPE-3 TYPE-4

CHANNEL (1,i) Forcex Forcex Forcex
1,2 Forcex

CHANNEL (2,i) Forcey Forcey Forcex
3,4 Forcey

CHANNEL (3,i) Forcez Forcez Forcey
1,4 Forcez

CHANNEL (4,i) CoPx Momentx Forcey
2,3 Momentx

CHANNEL (5,i) CoPy Momenty Forcez
1 Momenty

The C3D File Format User Guide Required Parameters • 93

CHANNEL (6,i) Free Momentz Momentz Forcez
2 Momentz

CHANNEL (7,i) n/a n/a n/a Forcez
3

CHANNEL (8,i) n/a n/a n/a Forcez
4

Figure 33 – Force platform signals by TYPE.

Note that if your data collection environment used several different types of force
platforms and any of them are Type-3 then this parameter must contain eight (8,)
entries for all plates. If Type-3 plates are not used then the dimension may be either

. (6,) or (8,) as the unused values in the CHANNEL parameter will be ignored

The table above shows the assignment of analog channel numbers to force plate
signals within this parameter where i is the force platform number. For instance, if
MZ of force platform number 2 is connected to analog channel 15, then
CHANNEL(6,2) should contain the entry 15.

CAL_MATRIX
The The calibration matrix is

the inverse matrix of the
sensitivity matrix used to
calculate the scaling
factors for TYPE-2 plates.

FORCE_PLATFORM:CAL_MATRIX parameter is an array of floating-point values,
supplied by the force platform manufacturer, that contain force platform calibration
matrices. This allows for greater accuracy in the calculation of forces, powers and
moments from the recorded analog data as the full calibration matrices are now
stored within the C3D file and are available to any application that reads the analog
data from the C3D file.

This parameter is only applicable to TYPE-4 force platforms having six channel
outputs. A calibration matrix enables software applications to correct for cross talk
between outputs of the force platform; software applications that use the full
calibration matrix to correct for cross talk will typically provide more accurate
results when compared to applications that only have access to the major diagonal
component. As a result, it is recommended that the CAL_MATRIX parameter be
always included with force data from TYPE-4 plates if possible – software
applications may choose which correction method they wish to use when the
CAL_MATRIX is present in a C3D file.

Since the CAL_MATRIX parameter will be ignored, even if present, unless the force
platform type is 4, its inclusion in a C3D file does not automatically imply that it
must be applied to the stored force data. Force data from TYPE-1 and TYPE-2 force
plates is scaled using the ANALOG:SCALE factors as described in detail in the chapter
entitled “Calculating SCALE values for force plates” starting on page 81. When the
CAL_MATRIX parameter is present for TYPE-2 and TYPE-4 plates, all software
applications must reset the scaling data stored in the appropriate ANALOG:SCALE
parameters to their “unscaled” values before applying the CAL_MATRIX parameter
information.

Note that most force plate systems include some degree of variable amplification of
the signals from the plate. The amount of amplification applied to each force signal
must be taken into account when applying the calibration matrix and is an important
factor is the calculation of the correct ANALOG:SCALE value for each force plate
channel.

If a calibration matrix is entered for a force platform, it should be used in addition to
the individual channel scales. The 6 x 6 calibration matrix for each force platform
should be applied to the measured channel outputs to obtain the corrected channel
outputs according to the matrix equation:

[CAL_MATRIX] Fmeasured = Fcorrected

94 • Required Parameters The C3D File Format User Guide

where the F’s are 6-element column vectors. Hence, the elements of the calibration
matrix must be entered in column order, i.e. for the first force platform:

• CAL_MATRIX(1,1,1) must contain the first element of the matrix.

• CAL_MATRIX(6,1,1) the last element of the first column.

• CAL_MATRIX(1,2,1) must contain the first element of the second
column, etc.

Typically, the calibration matrix is supplied with units of N/V for the force channels
and N•m/V for the moment channels. If you are using distance units of millimeters
in your reference coordinate system, then the last three rows of the calibration matrix
must be multiplied by 1000 before being entered into CAL_MATRIX as shown
below:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−−
−−−

−−
−−−−

305.390053.0339.0395.2261.4986.2
710.0414.734942.1344.39846.6615.0
186.1105.0784.739959.3459.3274.10
021.0047.0034.0885.5001.0082.0
001.0006.0002.0101.0558.1009.0
002.0008.0017.0092.0002.0557.1

Note that, unlike Type-2 force platforms, the analog channels associated with Type-4
force platforms are not pre-scaled – see the earlier discussions on page 81 for full
details on calculating the analog scale values for each force platform type. Sample
data files and spreadsheets are available from http://www.c3d.org that implement the
full CAL_MATRIX parameter calculations.

Unfortunately, at the time of writing, this parameter is relatively uncommon in C3D
files. Its use is recommended for all future 6-channel force platforms as it provides
additional information that improves the quality of the force data and removes the
need to calculate individual ANALOG:SCALE values for each force platform channel.

The C3D File Format User Guide Required Parameters • 95

http://www.c3d.org/

Application Parameters

Overview
It is common to find other parameters in many C3D files in addition to the basic
parameters that are required to describe the data contained within the file. These
parameters may not exist in every C3D file – many of them record values that are
either associated with the data (i.e. subject weight, leg length etc) or are required by
another application.

All applications that read and write C3D files must, by default, preserve any
parameters that are contained in the input C3D file when processing and writing a
new C3D file.

This chapter describes some of the many application parameters found in C3D files
and provides some comments about them. The list here is not exhaustive but simply
a selection to demonstrate the flexibility of the C3D parameters and introduce some
of the manufacturer or hardware specific parameters that exist. Documentation on
the precise use of specific C3D parameters is usually available on request from the
software application developer or hardware manufacturer.

Ask your C3D application
vendor for complete
documentation of all C3D
parameters that they create
or use.

The intention here is not to single out specific manufacturers or application
developers for praise or criticism – no developer or manufacturer is identified.
These are simply examples of parameters that demonstrate the good and bad points
in the choice of name, value, implementation, or documentation etc. If you like, you
can read this section as a brief background to the art of group and parameter
creation.

The information presented in this chapter is based on the examination of C3D files
from various manufacturers C3D applications. As a result, this chapter should not be
considered authorative and all questions regarding the exact interpretation of this
information must be resolved with the application manufacturer.

The POINT Group
Although initially conceived as a group that provided information about the 3D data,
the POINT group also contains a number of parameters that may control the display
and presentation of the data to the user. Various manufacturers have added
parameters to this group that allow applications to store processed data within the 3D
data section so that C3D files may now contain the results of modeling calculations
in addition to marker positional information.

The C3D File Format User Guide Application Parameters • 97

INITIAL_COMMAND
The Optionally used by AMASS

software, this parameter is
not usually required by
other applications.

POINT:INITIAL_COMMAND parameter is a single ASCII character string
(character data type) that contains an optional command string that can be read when
a C3D file is opened. This string can be up to 127 characters long and could
configure the C3D application to present a particular view or perform some
predetermined analysis.

This parameter does not affect any of the default C3D parameters and is completely
compatible with the C3D file format. This is a nice way to pass a command or set of
commands to a program for initial configuration, analysis or simply to run a software
demo function for example.

Since any application or user can access this parameter, it would be a good idea if the
program that utilizes the values performed a thorough syntax checks on contents to
make sure that they are correct.

X_SCREEN
This is a two-character ASCII string containing a sign together with a single
character (

Although required by
AMASS software this
parameter is not usually
used otherwise.

+X, +Y, +Z, -X, -Y, -Z) that indicates which axis of the reference
coordinate system will be displayed left-to-right across the screen. This parameter
provides information and is compatible with the C3D file format.

While this parameter (and its companion Y_SCREEN, below) and commonly found in
C3D files it seems that most software applications ignore them. Remember that
setting a C3D parameter to a particular value will only be effective if the software
application reading the C3D file implements the parameter.

Y_SCREEN
Like the Although required by

AMASS software this
parameter is not usually
used otherwise.

X_SCREEN above, this is an ASCII string containing a sign together with a
single character (+X, +Y, +Z, -X, -Y, -Z). This is used by software applications to
indicate which axis of the reference coordinate system should be displayed bottom-
to-top up the screen when the application initially opens the file.

A companion to the X_SCREEN parameter above, this parameter is also compatible
with the C3D file format. Note that the programmer could have chosen to implement
the parameter as an array, e.g., SCREEN(1,2). However, this might not have been as
intuitive for a casual user to edit or use. Creating two separate parameters was a
good decision as it makes the function of both values clear.

MOVIE_DELAY
This is a single floating-point value that records the synchronization offset, in
seconds and fractions of a second, between frame 1 of the trial and the start of
additional movie data. Exactly how this would work is not clear from the Vicon
documentation – does a positive value indicated that the C#D data precedes the
additional movie data or lags behind the movie data?

Introduced by Vicon
workstation software but
not commonly used.

The capability exists for this additional movie data to be stored within the C3D file
although the intent of this parameter to synchronize data that has been stored in an
external video file (such as AVI or MPEG etc). The storage of additional data such
as video records in a separate file can potentially cause a problem if the external
video file is overwritten, edited, or changed in some way as this could invalidate the
stored MOVIE_DELAY value. Ideally the video information should be stored in a
separate data block within the C3D file – see page 119 for a discussion of methods to

98 • Application Parameters The C3D File Format User Guide

create additional data blocks within the C3D file to store information such as video
frame images.

LABELS2
This is an array of up to 255 character strings. Some software applications can
generate a great many 3D trajectories. Since the C3D parameter arrays (used to store
the

Introduced by Vicon
workstation software, this
parameter, and related
parameters are common in
many larger C3D files.

POINT:LABEL names) have a maximum dimension of 255, the use of a single
label array would limit the number of 3D markers that could be stored in a C3D file.
The solution here is to create additional parameters by adding a number e.g., LABEL
LABEL2. This new parameter is used to store additional ASCII labels beyond the 255
limit in the default POINT:LABELS group and expands the maximum number of labels
to 510. If required, additional parameters like this could exist such as LABELS3,
LABELS4, etc. to store even more 3D point labels.

However, many common C3D applications will be unable to access the labels from
trajectory numbers greater than 127 although they will have no trouble reading the
3D data points. Since the parameter index is stored as a signed byte many
applications may have problems interpreting these labels unless they treat the
parameter index as unsigned.

DESCRIPTIONS2
This is another array of character strings with an entry to match each Introduced by Vicon

workstation software, this
parameter, and related
parameters are common in
many larger C3D files.

LABELS2 value.
This parameter is synchronized with the LABELS2 parameter and contains additional
ASCII description strings beyond the 127 array size limit of the standard
POINT:DESCRIPTIONS parameter. This parameter will track the existence of the
LABELSn parameters – there should be a corresponding DESCRIPTIONSn parameter
for each LABELSn parameter.

The same comments apply to this parameter as the previous LABELS2 – most
common C3D applications will be unable to access these new descriptions although
they will have no trouble reading the 3D data points. Since the additional
information is stored as a parameter it should be quite easy to update other
applications to handle this at the same time that support was added for the LABELS2
parameter.

TYPE_GROUPS
This parameter is one of a suite of parameters that are added to C3D files by
applications that store the results of kinematic calculations in C3D files by storing
the results as additional POINT values. While this method appears rather untidy, in
that it can add large numbers of very “odd” data values to the 3D point group, it has
the major advantage that it is compatible with virtually all existing C3D software
applications. Thus, kinematic data that has been generated and stored this way is
accessible to virtually any other user of software application.

Introduced by Vicon
workstation software, this
parameter, and the related
kinematic variables
parameters are common in
many C3D files that
contain clinical data.

An array of ASCII character strings that identify the POINT parameter names that are
associated with different data types such as measured points, calculated virtual
points, angles or forces, etc. For each entry in this table, there should be a
corresponding POINT parameter listing the marker labels that correspond to that type
group.

The C3D File Format User Guide Application Parameters • 99

ANGLES
This is an array of ASCII character string labels that match strings used in
POINT:LABELS and are used to identify trajectories stored in the 3D data section. 3D
trajectories that match strings in POINT:ANGLES should be treated as three-
dimensional angles measured in degrees.

SCALARS
An array of ASCII character labels. 3D point trajectories with labels matching those
in POINT:SCALARS are to be treated as scalars rather than 3D co-ordinates. The
magnitude of the scalar is stored in the Z component with X and Y both set to zero.
The units (if any) depend on the meaning of each scalar according to the model that
produced them and are recorded in the parameter POINT:SCALAR_UNITS.

SCALAR_UNITS
A single ASCII string that stores the measurement units used by the scalar values
(e.g. mm, M etc.,) stored in the C3D file.

POWERS
This is an array of ASCII character labels. 3D trajectories with labels matching
those in this list are to be treated as powers rather than 3D points. Since powers are
scalars rather than vectors, the value is held in the Z component with X and Y both
set to zero. See the parameter POINT:POWER_UNITS parameter for units used to
store the powers.

POWER_UNITS
This is a single ASCII string that stores the measurement units used by the power
values, e.g. mW, W, kW etc., and stored in the C3D file.

FORCES
This is an array of ASCII character labels. Trajectories with labels matching those in
this list are to be treated as forces rather than 3D coordinates. See the parameter
POINT:FORCE_UNITS for the units used to store the forces.

FORCE_UNITS
A single ASCII string that stores the measurement units used by the force values, e.g.
N, kN, mN, etc.

MOMENTS
An array of ASCII character labels. Trajectories with labels matching those in this
list are to be treated as moments rather than 3D coordinates. See the parameter
POINT:MOMENT_UNITS for the units used to store the moments.

100 • Application Parameters The C3D File Format User Guide

MOMENT_UNITS
A single ASCII string that stores the measurement units used by the moment values,
e.g. Nmm, Nm, etc.

REACTIONS
An array of ASCII character labels. These labels are used as a base name for
identifying three trajectories each that represent the force, moment and point
components of a reaction. The corresponding force trajectories have an “.F” suffix,
the moment trajectories an “.M” suffix and the point trajectories a “.P” suffix. For
example, “LKNEE” would correspond to “LNKEE.F”, “ ”, and “LKNEE.M LNKEE.P”
trajectories. Note that force and moment trajectories listed in REACTIONS should not
appear in the FORCE and MOMENTS lists.

The ANALOG Group

GAIN
The ANALOG:GAIN parameter is an array of signed integer values – one entry per
USED analog channel – that record the voltage ranges of the individual analog
channels. The implementers specified the following values:

0 = unknown
1 = +/- 10Volts
2 = +/- 5Volts
3 = +/- 2.5Volts
4 = +/- 1.25Volts.

This is a useful addition to the ANALOG parameters because is allows an application
to record the gain or voltage range associated with individual analog channels. This
allows applications to modify the ANALOG:SCALE values to be adjusted when any
particular channel gain is changed. This is particularly useful since the gains applied
to each analog channel are used in the calculations for the ANALOG:SCALE values
associated with the channels – application software that can determine individual
channel gains can modify the analog scale values safely.
This is compatible with the C3D file format although software applications may need
to be modified to take advantage of the additional information.

The SEG Group
The Although not usually

required in a C3D file, the
SEG group contains useful
information about the
environment used during
data collection.

SEG parameter group was originally a part of the AMASS software system and
was included in the C3D file to provide the user with information as to what
parameters were used when the data were tracked and processed. It is used by a
number of different 3D photogrammetry applications contains application specific
values. While many of these applications use the same common set of parameter
names it should not be assumed that parameters are interpreted in the same way, or
contain the same values.

The presence of SEG parameters in a C3D file is optional and normally only serves to
provide information that is specific to the application that initially created the C3D
file.

The C3D File Format User Guide Application Parameters • 101

MARKER_DIAMETER
A floating-point value that contains the diameter of the markers, or largest marker
used, in the collection of 3D data. This parameter is measured using the units
recorded in the POINT:UNITS parameter, which is the same unit as used in the
reference coordinate system.

This is a good example of a parameter that is defined in terms of the value of a
standard C3D parameter. Since marker based photogrammetry software generally
calculates the center locations of spherical markers it is important to know the
marker size in order to accurately measure the position of the object to which the
marker is attached.

DATA_LIMITS
A 3 by 2 array of floating-point values that defines the upper and lower limits of the
reconstruction volume (measured in POINT:UNITS) during the trajectory
photogrammetry calculations.

This parameter is generally used by the photogrammetry software to enable it to
discard 3D information that strays outside the data collection volume. This helps
speed up the intense photogrammetry computations by allowing an application to
ignore unwanted data. If set correctly, it can also provide useful information to any
application that needs to set up a view window as it documents the maximum bounds
of the 3D trajectory data.

ACC_FACTOR
A single floating point value that sets the maximum average acceleration (in terms of
POINT:UNITS seconds, per second) over five successive samples for photogrammetry
software to start a new segment. This generally has a nominal value for gait analysis
of 50mm/sec/sec but this may be varied for other trajectory sources.

NOISE_FACTOR
A single floating point value that sets the maximum deviation from constant
acceleration (in terms of POINT:UNITS) over five successive points for
photogrammetry applications to start new trajectory segment. The nominal value for
gait analysis is 10mm.

ANGLE_ERROR_FACTOR
Used by AMASS photogrammetry software, this is a single floating-point value that
is multiplied to average calibration angular error of each camera to determine “cone
of reconstruction” for trajectory construction. Its nominal value for gait analysis is
2.0 degrees.

PREDICTION_ERROR
A single floating point value that records the radius of extrapolated prediction
volume (in terms of POINT:UNITS) for trajectory segment continuity in AMASS
software – the nominal value for gait analysis with 25mm markers is 25mm.

102 • Application Parameters The C3D File Format User Guide

RESIDUAL_ERROR _FACTOR
A single floating point value that controls the inclusion of rays during marker
reconstruction. It has a nominal value of 2.0 to 3.0 for most gait analysis
applications.

MAX_NOISE_FACTOR
A single floating point value that controls creation of new trajectories. Measured in
POINT:UNITS its nominal value is 12mm or less.

INTERSECTION_LIMIT
A single floating point value that sets the limit for the intersection of
photogrammetric rays to reconstruct a 3D point. Its nominal value, in terms of
POINT:UNITS is 7mm or less.

The SUBJECT Group
This parameter group has been in use by several C3D applications from The National
Institutes of Health (NIH) in Bethesda, MD for a number of years. It stores various
parameters that contain specific anthropometrical information relating to the subject
information stored in the C3D file. It should not be confused with the similarly
named SUBJECTS groups used by other software applications.

As a rule, it is a good idea to try to keep group names unique when they store
different types of data. It is also recommended that the first six characters of a group
or parameter names should be unique for compatibility with older FORTRAN
applications that only looked at the first six characters of the name during a search of
the parameter section. In general, it is a good idea to try to use an existing group
name if one exists that describes the parameters that you want to save.

Try to think ahead when
creating parameter names
– C3D files are very
portable and can be
around for a long time.

DIST_RADIUS
The NIH documentation for this parameter (an array of 20 floating-point numbers)
says that it contains the distal radius (in meters) for each model segment. This
clearly violates one of the basic C3D rules that every distance in a C3D file must be
expressed in the same units as specified in the parameter. POINT:UNITS

Thus, the DIST_RADIUS parameter’s choice of measurement units is incompatible
with the C3D file format specification. Any application that uses this value must
scale in appropriately, depending on the value used in the POINT:UNITS parameter.
A better choice (philosophically at least) would have been to store the measurements
in the same units as documented in the POINT:UNITS parameter.

WEIGHT
A single floating-point value that defines the subjects weight in kilograms.

This is a very useful addition to the C3D file parameters – this records the subjects
weight at the time of the 3D data was created and is essential for any clinical analysis
that normalizes the output by scaling the data by the subjects weight. Since this is a
parameter, the information will always be available for analysis at any time.

The C3D File Format User Guide Application Parameters • 103

Note that since there are several possible units (lbs, kgs, etc.) that can be used to
record the subjects weight it is vital to use the parameter description to record the
units used. However, for unit information to be useful it must have a parameter entry
since the optional parameter description field is never considered to contain usable
data.

TARGET_RADIUS
This is described as “A single floating-point value that defines the radius of the
model targets in the subject calibration file.”

Since this parameter provides information it is compatible with the C3D file
specification although the measurement units are not stated. Considering that other
parameters in this group (e.g.

Always document all your
parameters using the group
and parameter description
strings are provided in the
C3D parameter section.

DIST_RADIUS et. al.) are recorded in meters this may
be the correct unit for this parameter too. However, since the units are not stated it is
possible that they are the same units as documented in the POINT:UNITS parameter.

The SUBJECTS Group
The SUBJECTS group is used by an animation-modeling package and should not be
confused with the similarly named SUBJECT group. It is not a good idea to create a
new group name that is very similar to another name that has been in common use.
In addition, this group actually contains very little information about the actual
“subjects” of the test other than their name – it might have been better to have named
it “configuration”, “parameters”, or “data_sets” etc.

IS_STATIC
A single signed integer variable, this is set to 1 if the trial subjects were captured in a
static pose for the purposes of calibration, otherwise . 0

Although this is compatible with the C3D specification, the parameter really should
have been a logical parameter type since this is the way that the parameter is
documented and used.

NAMES
The SUBJECTS:NAMES parameter is an array of ASCII character strings with the
description “N subject names of length L”.

The description really is not very helpful – especially since this description came
from the manufacturers’ documentation… the actual parameter description string in
the C3D file is empty. This parameter must serve some function but it is going to
remain a mystery to anyone who opens the C3D file.

MODEL_PARAMS
The SUBJECTS:MODEL_PARAMS parameter is an array of ASCII character strings that
contain the marker set names used in the trial. These identify the model parameter
(usually .MP files) filenames for each subject ordered as in the NAMES parameter
above. Each subject will typically have his or her own model parameters. Note that
the path is excluded from the filename.

an external file According to the description, this parameter contains the filename ofDo not store information

104 • Application Parameters The C3D File Format User Guide

that is required to process
or validate the data stored
in the C3D file (such as
model parameters etc.) in
separate files.

that holds data about the trial that is relevant to the contents of this C3D file. This is
an example an applications programmer failing to understand the rational for using
the C3D file format. The implication of this parameter is that, if it is used, the
resulting C3D file will probably not contain details of all of the parametric values
needed to process or interpret the data.

In this example data portability has been compromised because if this C3D file is
ever separated from the required model parameter files there may no way to process
the contents or validate the results stored in the file.

The C3D format is flexible and can easily store complex information within the
parameter section. Data stored as parameters is preserved and is accessible to
anyone reading the file.

USES_PREFIXES
A single signed integer variable, this is set to 1 if the trial subjects are identified by
prefixing the subject name to the point label, otherwise set to 0. The manufacturers’
documentation states that this is only used when labeling has not yet been performed
and that the presence of any non-blank SUBJECT:LABEL_PREFIXES entries overrides
this parameter.

Although this is compatible with the C3D specification, the parameter really should
have been a logical parameter type since this is the way that the parameter is
documented and used. In addition, the documentation suggests that this is a
temporary parameter that is used to pass information between an application that
performs the photogrammetry calculations and a point labeling process.

LABEL_PREFIXES
The SUBJECT:LABEL_PREFIXES parameter is an array of ASCII character strings that
identify prefixes attached to the trajectory labels for each subject ordered as in
SUBJECT:NAMES parameter. Each prefix is typically either blank or the same as the
subject name but with a colon ‘:’ suffix e.g., “FRED:” where the NAMES parameter
contains “ ” without the colon. FRED

USED
A single signed integer variable that stores the number of named subjects in the trial.
It is set to 0 in C3D files where specific subjects were not used or for trials that
contain only subject calibration data.

MARKER_SETS
The SUBJECT:MARKER_SETS parameter is an array of ASCII character strings that
identify filenames that contains the names used by the manufacturers’ trajectory
identification application for each subject. The MARKER_SETS filenames are
entered in the same order as SUBJECT:NAMES to allow each subject to use a different
marker set to identify the 3D points. Note that the use of LABEL_PREFIXES allows
the same marker names to by used on two subjects in the same C3D file.

The parameter contains only the filename – both the file type (i.e. MKR etc) and the
path or location of the file are omitted from the parameter.

The C3D File Format User Guide Application Parameters • 105

DISPLAY_SETS
This is an array of ASCII strings that identify the active display set within the marker
set for each subject ordered as in the POINT:NAMES parameter. If this parameter is
blank then the first display set should be used.

MODELS
An array of ASCII strings containing marker set names. These identify the model
filenames for each subject ordered as in NAMES. Each subject may use a different
model. Note that the path is excluded from the model filename – model file names
will normally end in .MOD – since the location of the path is not specified, any
application attempting to locate the model file will need to know where to find it.

This is another example of a poor choice of parameter storage as the parameter is
providing information that is only useful if another file (the .MOD file) can be
located. If the .MOD file becomes separated from the C3D file then it is possible
that the data contained in the C3D file will become worthless. It would have been
much better, if the model information is important, to include it within the C3D file –
either as a group or a set of parameters.

The MANUFACTURER Group
The MANUFACTURER group can be used to record information about the software
or hardware used to create or modify the C3D file. This group is intended to simply
provide information that can be used to identify the source of the data later. There
are no requirements that this group exist in a C3D file or that it contains any specific
parameters but the following parameters are common.

COMPANY
An ASCII character string, the COMPANY parameter will identify the name of the
company whose software was the original source of the C3D file. If this parameter
exists then it should be locked and should not be changed by other software
applications if they edit or modify the C3D file.

SOFTWARE
An ASCII character string, the SOFTWARE parameter will identify the name of the
software application that created the C3D file. If this parameter exists then it should
be locked and should not be changed by other software applications if they edit or
modify the C3D file.

VERSION
Stored as an ASCII character string, the VERSION parameter is intended to identify
the version of the software that created the C3D file. If this parameter exists then it
should be locked and should not be changed by other software applications if they
edit or modify the C3D file.

106 • Application Parameters The C3D File Format User Guide

Additional Parameters

Unofficial extensions
Several unofficial extensions to the C3D format have appeared in recent years.
These address areas of the C3D file format that are have become somewhat limiting
as the technology advances, and motion capture systems create larger C3D files.
This chapter attempts to document some of the parameters that may be found in
modern C3D files – these parameters should not be considered part of the C3D
standard or even a requirement in a C3D file. Comprehensive documentation of
these parameters should be obtained from your software application provider.

The TRIAL Group
The C3D file header contains the frame numbers of the first and last frames of trial
data stored in the C3D file while the total number of frames is stored in the
POINT:FRAMES parameter. The C3D format defines these as unsigned integer values
which limits these to a maximum value of 65535.

When using high-speed video cameras, this equates to a trial of just over two minutes
at 240Hz. To escape from the existing 16-bit integer limits and allow more than
65535 frames to be stored, two parameters (ACTUAL_START_FIELD and
ACTUAL_END_FIELD) have been created as 32-bit values in a new TRIAL group. It is
proposed that C3D applications should, in future, read these parameters and only use
the header values and parameter values if these new POINT:FRAMES TRIAL
parameters are not present.

The choice of parameter name isThe word “FRAME” would
have been a better choice
than “

 unfortunate as many video systems sample in the
interlaced mode where a 60Hz sample rate is obtained by sampling odd and even
fields at 30Hz. FIELD” here.

ACTUAL_START_FIELD
The first frame number is stored in two unsigned integer values to form a 32-bit
value. The first unsigned integer is the least significant word while the second is the
most significant word.

The C3D File Format User Guide Additional Parameters • 107

ACTUAL_END_FIELD
The last frame number is stored in two unsigned integer values to form a 32-bit
value. The first unsigned integer is the least significant word and the second is the
most significant word.

This implementation is compatible with the existing C3D specification so long as the
old parameter and header values are maintained whenever possible. This will be
compatible unless more than 65535 frames of data are recorded. Once this limit is
exceeded only applications that can read these parameters will be able to read the
additional data – although both old and new applications will be able to read all the
data up to 65535 frames in unsigned C3D files. Note than many older software
applications will treat the existing POINT:FRAMES parameter as a signed integer and
will fail to read files that contain more than 32767 frames.

VIDEO_RATE_DIVIDER
Normally with a value of one (1) this, unsigned integer value, records any delay
between successive 3D samples at the time of data collection. This allows data
collection applications to record marker positions every “n” frames for slow moving
points – such as occur in a tidal flow simulation for example. The actual data
capture rate, in terms of frames, is determined by dividing the TRIAL:CAMERA_RATE
parameter value by this value. A value of one (1) indicates that there is no delay
between frames while a value of two (2) indicates that data is only recorded every
second frame.

CAMERA_RATE
This floating-point parameter records the original data collection rate, in Hertz. This
value may be different to the value stored in the POINT:RATE parameter (and C3D
header) due to data re-sampling or video rate division (see VIDEO_RATE_DIVIDER
above).

DATE
This is an array of three unsigned integers that records the date of capture using the
western calendar system. The date is stored as the year, month, and day, in that
order.

TIME
An array of three unsigned integers that records the time of capture stored as the
hours, minutes and seconds, in that order using a 24 hour clock. This is normally
recorded in the local time rather than Universal Time (UTC).

The EVENT_CONTEXT Group
This group provides names and descriptions for the contexts of named events in the
C3D file that are stored in the EVENT group. The event context can be thought of as
defining the class of event without limiting the user by defining the type of event –
the typical event contexts are Left side event, Right side event, and General event but
other contexts can easily be created. This allows individual events to be created in
the EVENT group and then analyzed within their context. Thus, a Foot strike event
can have a Left side event or Right side event context and can be organized and

108 • Additional Parameters The C3D File Format User Guide

analyzed with other events with the same context. Multiple event contexts are
supported giving applications the ability to define custom event contexts.

The group (and an associated Applications that use this
format do not appear to use
the header event storage
area at all- as a result this
is not compatible with any
other C3D applications.

EVENT_CONTEXT EVENT group) have been added to
work around the limit of no more that 18 events in the C3D file header. The
descriptions of the parameters presented here are based on the descriptions provided
by the manufacturer and from the direct examination of C3D data files. The event
storage mechanism described here is completely separate from events stored in the
C3D header and there is no requirement that these events duplicate or match the
events stored in the C3D file header.

USED
A single signed integer that records the number of event contexts stored in the group
and available for use in the C3D file.

ICON_IDS
This is an array of EVENT_CONTEXT:USED unsigned integers that identify the icons
to associate with each context. Applications must provide the actual iconic
representation where appropriate. The ICON_ID parameter can be thought of as a
defining the event type or the context in which the event will be used.

LABELS
This is an array of EVENT_CONTEXT:USED ASCII labels (typically each 16
characters long) that provides the context label strings that may be used in the C3D
file, e.g. Left, Right, General etc.

DESCRIPTIONS
This contains an array of EVENT_CONTEXT:USER descriptions (typically up to 32
characters long) that are associated with the corresponding labels e.g. Left side event,
Right side event, General event. This parameter simply provides additional
descriptive information for each of the LABELS.

COLOURS
Note the British English spelling of this item in contrast to the US English spellings
used elsewhere in the C3D format description. This is a (3, EVENT_CONTEXT:USED)
array of unsigned integers that store the colors used by each event type as (R,G,B)
triplets with each value in the range 0 to 255. Potentially this allows the user to
highlight particular events in the C3D file with specific colors.

The EVENT Group
The Applications that use this

format do not appear to use
the header event storage
area at all- as a result this
is not compatible with any
other C3D applications.

EVENT group (and an associated EVENT_CONTEXT group) has been added to
work around the limit of a maximum of 18 events in the C3D file header. This
implementation works quite well although it seems to have been implemented rather
inelegantly, requiring 13 different parameters in two separate groups with very little
documentation of the functions of the parameters. The descriptions presented here
are based on the descriptions provided by the manufacturer and from the direct
examination of C3D data files.

The C3D File Format User Guide Additional Parameters • 109

The basic idea behind this implementation is very much like the concept of the
existing header record events (see page 35), a count of the total number of events is
maintained and then used it as an index to access the event times, status etc. It differs
in that it allows events to be placed in a context that can be used to organize and
group events in an open-ended and flexible manner.

USED
The USED parameter is a single signed integer that stores the total number of events
that are recorded in the EVENTS group. This is used as an index to many of the other
arrays in this group to locate individual event information.

CONTEXTS
This is an array of ASCII strings – typically sized as (USED,16) – that is used to
record a “context” for each event e.g. “Left”, “Right”, “General” etc. The string
used for each event is chosen from a list stored in the EVENT_CONTEXT:LABELS
parameter. This enables a “side” to be assigned to bipedal events where the observer
is interested in left versus right side data or could just as easily describe “up” versus
“down” events too.

LABELS
This is an array of ASCII strings, one for each stored event that records a LABEL
associated with each stored event e.g. “Foot Strike”, “Foot Off” etc. When used
with the appropriate EVENT:CONTEXT value this can identify an event as “Left Foot
Strike” or “Right Foot Off” etc.

DESCRIPTIONS
This is an array of ASCII strings – typically sized as (USED,32) – that records a
description for each event. This can be a long event definition (for example, “The
moment any part of the foot first contacts the floor during a gait cycle”) or a simple
descriptive string e.g. “Heel Contact”.

TIMES
This records the time of each event from the start of the trial where the first 3D
sample (frame 1) is time 0.0. The time is recorded in an array (USED,2) as two
floating-point numbers in the form of “whole minutes”, “seconds (and fractions of)”.

To obtain the actual event time, add the two values together using double precision
floating point storage. The stored times are based on the 3D sample rate as recorded
in the header and POINT:RATE parameters and assume that this value is correct. This
could cause problems if the value stored in the C3D file does not match the true data
collection rate, e.g., if an application stores a rate of 60 when the actual video frame
rate is 59.94Hz.

SUBJECTS
An array of (USED) ASCII character strings that serves to identify subject names
associated with individual events. This parameter supports situations where they
may be several different subjects recorded at the same time. Empty strings apply to

110 • Additional Parameters The C3D File Format User Guide

the whole trial so, if present, this parameter will usually be empty if there is only a
single subject recorded in a trial.

ICON_IDS
An array of (USED) signed integers that allow an application to identify the icons
associated with each event as defined in the EVENT:DESCRIPTIONS parameters.
Thus an ICON_ID can be thought of as an event type. Since the values of this
parameter are not specified, applications must provide the actual icon representation
themselves.

GENERIC_FLAGS
An array of (USED) flags associated with the corresponding labels, indicating
whether the event is general purpose (value non-zero) or has specific purpose (value
zero). General-purpose events have free-entry text labels and descriptions whereas
those of specialized events tend to be fixed.

The C3D File Format User Guide Additional Parameters • 111

C3D file basics

Creating a C3D file
This chapter attempts to describe – very briefly – the steps necessary to create a C3D
file. It does not explain all the details of the format, or the options available. You
will need to read the rest of this manual for explanations and details of the topics
covered here.

Novices may prefer to use
an application like the MLS
C3Dserver to automate file
creation and access.

The coordinate and analog data in C3D files are written in either 16-bit signed
integer format or 32-bit floating-point format. C3D files are organized in sections,
consisting of blocks that are 512 bytes long. All files have a minimum of three
sections:

• The first section consists of just one, 512 byte, header record block and
contains a few pointers and some parameter data.

• The second section starts at a location indicated by a pointer in the
header (usually block number 2) and contains parameters stored in a
unique format. This section is variable in length but is typically about
10 blocks long.

• The third section starts at a location indicated by a pointer in the header
(usually following the parameter section). This section of the file
contains the 3D point coordinate data, and analog data if analog data
were available when the .C3D file was created.

Other data sections may exist between the end of the parameter section and the start
of the 3D point coordinate section. The C3D standard permits this but does not
indicate any method of locating such data sections. The ability of other applications
to read any C3D file with more than the standard three sections described above
should be evaluated if portability is the prime concern.

The next three sidebars
below list the steps
necessary to create a
standard C3Dfile.

The C3D web site (http://www.c3d.org) contains numerous examples of correctly
written C3D files including a suite of C3D files that can be used to test any C3D
application for correct operation. This is an excellent resource for anyone who wants
to create applications that read and write C3D files. Several utilities are available
from the site that view, edit and dump C3D files to ASCII text files.

The C3D File Format User Guide C3D file basics • 113

http://www.c3d.org/

Header Section
Although all parameters of interest are contained in the parameter section, a few
essential parameters necessary for accessing the data in the file are repeated in the
header section in simple form. The parameters in this section are useful if one does
not wish to use the parameter subroutines required to access the quantities written in
parameter format. This is a 512-byte block - the first few words of the header
section are utilized to store pointers to the other sections in the C3D file and some
abbreviated parameter data - the rest of the header section contains zeros unless time
event data is included.

1. Start with a 512-byte
block of 0x00h and write
the key word that identifies
this as a C3D file… then
proceed to create the
parameter section before
returning to fill in the rest
of the header values.

Parameter Section
The parameter section is written in a unique format documented on page 39. The
first two bytes of the parameter header record are not used, although for
compatibility with some legacy applications they should be written so that byte 1
contains 0x01h (decimal 1), and byte 2 contains 0x50h (decimal 80). You should
ignore these two bytes when you read a parameter record within a C3D file.

2. Write parameters into
the parameter section –
Then update the header
section with the required
parameter values.

Byte 3 of the first parameter record contains the number of parameter blocks, and
byte 4 contains 0x53h (decimal 83) + processor type. Processor type may have the
value 1, 2, or 3. The actual parameter data starts at byte 5.

Within the parameter section, the records belonging to groups (see page 47) and
parameters (see page 48) are stored in no particular order, and are located by
searching through the parameter section.

Always check the parameters carefully – make sure that the parameter data types are
correct and pay particular attention to ensure that all the required parameters are
present. Make sure that every 3D data channel has all the require POINT
parameters and that the analog channels have all the necessary ANALOG and
FORCE_PLATFORM parameters. Make sure that the ANALOG channels are
scaled correctly. If force plate data is present then pay particular attention to make
sure that the associated force plate parameters are correct.

Fill any unused space at the end of the 512-byte block with 0x00h if you require
compatibility with applications that fail to set the parameter pointers correctly.

Data Section
The 3D coordinate and analog data are written frame-sequentially starting at the
beginning of data section. The data are packed into records such that frames may
cross 512-byte block boundaries. The 3D coordinate data are normally stored in 16-
bit signed integer format and must be multiplied by the POINT:SCALE factor to
generate values expressed in the external (reference coordinate system) measurement
units. If the data is stored in floating point format, then the scale factor has already
been applied and it is set to be negative. Each 3D point is described by four words.
If the data is stored in integer form, these 16-bit words contain the following:

3. Write the correct value
for the data start pointer to
the start of 3D data into
both the header and
parameter area. Calculate
the SCALE value for the
range of 3D data and write
it to the header and
parameter section.

Word 1 X-coordinate of point divided by the scale factor

Word 2 Y-coordinate of point divided by the scale factor

Word 3 Z-coordinate of point divided by the scale factor

Word 4 Byte 1: camera mask.

Byte 2: average residual divided by the scale factor.

114 • C3D file basics The C3D File Format User Guide

The video data points for frame one are stored first, followed by one or more analog
“frames” if analog data are present. If the analog data rate was the same as the video
frame rate then only one analog frame will follow each video frame. If analog rate
was twice the video rate, then two analog frames will follow the video frame, etc.

4. Finally, write the data
records and close the file.

• Video and analog data formats are always the same – signed integer or
floating-point.

• 3D points are written in the order set by the parameter list
POINT:LABELS.

• If a point was invalid in a frame (not observed by at least two cameras),
its 4th word will be set to -1, and the X, Y, and Z coordinates will be set
to zero. For points that were interpolated, the 4th word is set to zero.

• In an integer file, the coordinates and residuals are recorded in internal
units, and must be multiplied by the scaling factor in POINT:SCALE to
obtain reference coordinate system units.

• The analog data are stored in the same order as in the raw data stream,
i.e. if the analog frame rate was higher than the video frame rate, the
order through the channels is repeated as many times as is appropriate.
The first word after the end of the analog data is the X-coordinate of
the first point in the next frame.

Reading a C3D file
The task of reading a C3D file from scratch can seem quite daunting to the novice
programmer but is actually just a series of simple operations that need to be
performed in a logical order. This information is presented here for anyone who
needs to write low-level subroutines to open and read the contents of a C3D file. As
a result, we will discuss this in general terms without referencing any code – the
actual file operations can be coded in any programming language. It is assumed that
the reader is familiar with the contents of this manual so the descriptions presented
here are quite brief – you should refer to the appropriate chapters in the manual for
full details of each header and data value described here.

Samples of each of the
different C3D file formats
are available from the C3D
web site and can be used to
check that user-written
applications return the
correct values.

1. Start by reading the first two bytes of the C3D file – these two bytes
contain a flag and a pointer. The first byte is a pointer to the start of the
parameter head record block while the second byte is always 0x50h. If
the second byte (the flag byte) is not 0x50h then the file is not a C3D
file – if the second byte is 0x50h then the file is probably a C3D file.
Note that if you are reading the file in 16-bit words then the first word
will be 0x50nnh where nn is the pointer value.

2. If the flag byte is 0x50h then we take the value of the first byte (the
pointer) and multiply it by 512 – this value then points to the start of
the parameter records. Ignore the first two bytes (the first word) at the
start of the parameter record and read the second pair of bytes (the
second word).

3. The first is the number of 512-byte blocks in the parameter section –
this tells us the size of the parameter section in the C3D file. The
second is a flag byte that indicates the format used to store floating-
point numbers in this C3D file – it will be 0x54h, 0x55h, or 0x56h.
This byte must be within this range if the file is a C3D file.

The C3D File Format User Guide C3D file basics • 115

At this point we have two flags that agree that this is a C3D file (the odds of being
wrong are 1 in 65,537), we know the location and size of the parameter block and we
know what format is used to store floating point values. We have all the information
needed to read the parameter section and determine the parameter values.

The recommended procedure at this point would be to read the parameter section and
store the parameter values. These should be checked against the values stored in the
C3D file header – the parameter values should always match the C3D header values
although in rare cases you may find discrepancies. In general, it is recommended
that the parameter section values are preferred over the header values if there is any
disagreement between two values.

By default, in a signed C3D file, all integer and parameter values in the parameter
section are signed values. However, unsigned C3D file will use unsigned integers
and bytes to extend the ranges of some parameters so all parameter read operations
should check the parameter values, and particularly the array indexes, for negative
values and ranges as described on page 69.

Once the parameter section has been read, you can use the sign of the
POINT:SCALE parameter to determine if the 3D data section is stored in floating
point (a negative scale value)or integer format (a positive scale value). The contents
of the 3D data section can now be read. Other data sections may exist in the C3D
file – information on these (if they exist) will be found in the parameter section.

Hints and Clues
If this is your first attempt to create C3D files or add support for the C3D format to
an application then start with Integer C3D files. They are somewhat easier to create
and interpret, and most manufacturers provide support for the integer data format.

The C3D web site is an important resource and contains many examples of good
C3D files that conform to the C3D format description – start by writing applications
that read these files first. The C3D web site also provides sample code and several
applications that read and write C3D files.

Motion Lab Systems supplies a C3D Software Development Kit (SDK) that can be
used with most programming languages. This SDK is available free of charge for
non-commercial use and can be licensed for commercial applications. This is a
useful resource even if you are determined to write your own code.

Take the time to understand the format of the C3D file and the basic set of required
parameters – make sure that your software application stores all the necessary
information in the C3D file. If you store analog data then make sure that you create
all the analog parameters necessary to enable the information to be scaled and
interpreted correctly by other applications.

If your application supports force plates then make sure that you create the correct
force plate parameters.

Make sure that your application is prepared to deal with missing parameters and
format errors in C3D files from other sources.

Finally – when you have written an application that creates or reads C3D files, make
every effort to test it with other applications to ensure that you are creating C3D files
that are compatible with other manufacturers programs. A large collection of sample
C3D files are available from the C3D web site.

116 • C3D file basics The C3D File Format User Guide

The Future of C3D

Discussion
The format and descriptions of data and parameter storage for marker coordinates
and analog data in the C3D file are reasonably well established. In general, the
various manufacturers’ and programmers’ C3D offerings conform quite well to the
specifications documented here. However, the storage of data derived from the
marker and analog data needs to be addressed if effective cross-system compatibility
is to be achieved.

At the time that the C3D format was originally developed, computer disk access was
considerably slower and the option of storing data from a single frame in different
sections of a file was considered as being too inefficient. However, with current
technology, this option is now possible and may help in extending the storage of
other data types in a simple, yet backwards compatible, way.

For instance, derived data could be stored in separate data sections. The C3D format
allows for the storage of any number of data sections without compromising
backwards compatibility. Currently the only data section defined by the format is
the one containing the 3D marker coordinates, residual word, and analog data. The
DATA_START parameter defines the beginning of this data section, and the section is
assumed contiguous although in fact, contiguity for this section is only necessary for
backward compatibility; it is not required to be maintained for new data sections.

A single 512 byte Header section

One or more optional data sections such as Label and Range etc.

A Parameter section consisting of 1 or more 512-byte blocks.

One or more optional data sections containing AVI, XLS, DOC files etc.

A 3D point/analog data section consisting of one or more 512-byte blocks.

One or more optional data sections containing AVI, XLS, DOC files etc.

Figure 34 – A roadmap for future additions to the C3D format

The figure above simply illustrates the various areas within the existing C3D
specification that are available for future data storage. There is no reason why any
specific order needs to be imposed or even recommended. A pointer in the
parameter section can be used to indicate where in the file to find the appropriate
data section.

The C3D File Format User Guide The Future of C3D • 117

It would be useful in the future to establish rules for incorporating new data sections
into the C3D format that contain derived data, with appropriate entries in the
parameter section describing the sections start location in the file, its structure, and
names associated with the data items. A common nomenclature for parameters will
be important in making the data accessible to all users as well as preserving the
ability of older applications to work with the new data files.

With this approach, all
C3D programs know what
is present in the C3D file,
even though they may not
be able to access data in
the new sections.

Other areas that need to be considered are the limitation of a maximum of 32767
frames of 3D data within a C3D file caused by the use of a signed 16-bit integer
parameter (POINT:FRAMES) to 3D frames. The use of an 8-bit pointer to locate the
start of the parameter section and a 16-bit integer to record the start of the 3D data
section also places some limits of the C3D file structure although these are not, in
general, difficult to work around.

Label and Range Section
A new time event storage format has been proposed (see the C3D web site at This section is not part of

the C3D specification. It is
presented to demonstrate
one way that the C3D
format could be extended.

http://www.c3d.org for details) that would allow an unlimited number of time events
and ranges to be stored in a C3D file. Under this proposal, time events and ranges of
events will be stored in an additional section that can be added to any existing C3D
file.

The C3D file format permits one or more sections to be stored between the end of
the header and the start of the parameter section, between the end of the parameter
section and the start of the 3D data section, and following the 3D data section. The
proposed Label and Range format would utilize one of these available storage areas
to insert an additional data section.

This would not disrupt the existing C3D header event format and so would maintain
some compatibility with existing programs. Unfortunately, there are some
applications in common use that fail to use the header pointers to access the C3D file
sections. Any program that assumed the parameter sections always started in the
second 512-byte block of the C3D file would fail if the new section were located
immediately after the C3D file header. Any application that located the start of the
3D data by reading through the parameter section to the end and then looked for data
would fail if the new section were located after the parameter section.

The proposed section
would have no impact on
old applications that access
the C3D file using the
pointers stored in the
header and parameter
section as the new data
section would be skipped.

The current C3D file time event format provides storage for 18 time events in the
header section located in the first block of the C3D file. This has several
shortcomings, as many users need more than 18 time events to analyze files. In
addition, the current header format does not allow the event labels to be longer than
four characters – longer event names would provide better descriptions of each event
instance.

The proposal to add a new label and range (NLR) section to the C3D file places the
data in the space between the end of the parameter section and the start of the 3D
data section. This new section would provide additional event information to help
resolve these issues. Programs supporting the new section would identify it from a
new key and pointer in the C3D header and read the new event data values directly.
The new time event format would allow almost any number of event times to be
recorded and would additionally allow ranges of events to be described.

The number of additional
sections that could be
added following the C3D
header is limited by the size
of the variable (one byte in
header word 1) that
designates the location of
the parameter section.

While the proposed NLR section appears to be well thought out and offers the C3D
user a large range of options and event definition features, it has yet to be adopted by
any Motion Capture hardware manufacturer. As a result, it is not in common use and
few software applications support it. In addition, although the addition of this
section to a C3D file should not cause problems in theory, several major C3D

118 • The Future of C3D The C3D File Format User Guide

http://www.c3d.org/

software applications fail to read C3D files containing NLR sections – most probably
due to their failure to utilize the C3D pointers correctly.

General Data Sections
This is a proposal to extend the C3D file format by adding a general data section
capability. This could facilitate the inclusion of many other types of data into a C3D
file in a consistent and universally accessible manner.

Currently, data other than 3D coordinates/residuals are often stored in the point
group as points. Even though this practice does not violate the “grammar” of the
format it does present problems with interpretation and backwards compatibility, and
is unsatisfactory with regard to expandability. It is somewhat analogous to putting
all of the files on your computer into a single directory.

The proposal is to define a data section as a contiguous collection of 512 byte data
blocks, which holds some particular data. Actually, a scheme where the data
sections do not have to be contiguous could also be easily implemented. Currently,
the one and only data section, holds the X-Y-Z-R of the markers and the digitized
analog data channels.

In retrospect, the analog data should have probably gone into a separate data section
to allow for the easy accommodation of sampling rates different from the 3D frame
rate. However, at the time the format was developed, disk and computer technology
was considerably more limited and the decision was made to sacrifice convenience
for efficiency.

One feature of data sections would be that there could be any number of them in a
file. If an application program did not know about them then it would ignore them,
ensuring backwards compatibility.

Of course, any application can add a data section to a C3D file, but unless the
reading application knows about the nature and format of the data in the section, it
will be of little use. The idea behind having a general data section format is to
define a format within sections by standard parameters, so that another application
will be able to read and present the data without having been programmed
specifically to handle that data.

The existing parameter section will contain a new group with a specific name such as
DATA_SECTIONS. This group will have a list of parameters that are the names of
general data sections, e.g.,

DATA_SECTIONS: General data sections group
EMG signals EMG1
Joint angles ANGLES

MPEG video data VIDEO

Each parameter here will be of type “character”, and will name a group containing
parameters describing the format, contents, and location of that particular data
section. Thus, the proposal would enable the storage of a set of angle graphs in one
section, a full motion video file in another and a PDF report in a third.

As with the previously discussed NLR section, this proposal offers the opportunity to
expand the features available to the C3D user and application programmer – it is in
effect a general form of the NLR proposal. However, while the addition of new data
sections to a C3D file should not cause problems in theory, this too causes several
major C3D software applications to fail to read C3D files correctly due to poorly
written software from several application vendors over a considerable period of time.
It is difficult to see how this situation can be remedied until C3D users insist that

The C3D File Format User Guide The Future of C3D • 119

application vendors supply well-written, supported, software applications that
comply with the public C3D specification.

Usability and Elegance
While the addition of new data storage sections and more sophisticated methods of
event definition and storage are very attractive ideas, they both suffer from a
common problem. Their successful implementation and propagation require that
everyone using C3D files adhere to the common format definition and unfortunately,
many common applications fail this test. This limits the ability of one user or
application manufacturer to create, for example, the label and range section
described above and have another users applications read the C3D file correctly.

In spite of this problem there remains a great deal that can be done within a C3D file
that does not break other non-conforming applications. One of the easiest areas to
explore is the parameter section, which most applications use to store basic
information about the contents of the C3D file. The open structure of the parameter
section allows it to be viewed as an easily accessed database that contains
information about the data within the C3D file. As such, it is very simple to store
detailed information within the parameter section in such a way that a user and
access and update this at any time. This enhances the users ability to use the data
that they have stored and allows them to concentrate on the interpretation of the data,
rather than worrying about the condition of the data.

For instance, if your application uses multiple force plates, and it is important for
you to know which plates generated clean data, then this information can be stored
within the parameter section when the C3D file is processed. Subsequent file
accesses can read this information later without having to perform the data analysis
again. Applications can be written that select files for subsequent processing based
on the stored force data status, without the application having to have the slightest
ability to decode and interpret the raw force data.

If you record electromyography, or any other analog information, from a system that
has a trial specific calibration value then you can store that information in the C3D
file and allow your application to calibrate the data directly. The results of the
calibration can be stored and retrieved later, simply by reading the C3D file. There
is no need to try to retrieve the original trial notes simply to obtain the necessary
calibration information because it has been stored in the parameter section.

The use of the C3D parameter section allows programmers to create applications that
can open a file and show the user the unique status of the data within the file at any
time. Several different file can be opened, each one from a different source, and yet
each file will display the data correctly simply because the information about the
data is stored within the parameter section. Because of the open nature of the
parameter structure, this allows software applications to create and store their own
information while maintaining compatibility with other applications. This allows
programmers to write applications that do what the users want and that display and
process the data in a logical, easy to understand, manner.

Conclusion
The flexibility of the C3D format permits a great deal of room for future
enhancements and additions to the standard. However, the ability of current
applications to survive when presented with standard C3D files that implement these
changes depends on their level of compliance with the existing C3D standard.

All software applications
must fully support the C3D
file format standard as
documented in this manual.

120 • The Future of C3D The C3D File Format User Guide

All programmers and manufacturers must ensure that the C3D applications that are
written today read and write C3D files within the limits of the current standard. This
will allow everyone to benefit as the capabilities of the C3D format expand to meet
the requirements of the future. While it is understandable that a software application
written ten years ago may well fail to read future C3D format extensions, there is no
reason why any modern software application cannot fully comply with the public
C3D standard. C3D users must hold their software vendors accountable for any lack
of interoperability and associated compliance issues with C3D files if we are to
achieve a desired level of compatibility.

New applications that do
not implement the C3D
format correctly risk being
made obsolete or becoming
incompatible as additional
applications that conform
to the published C3D
standard are released.

One of the more remarkable features of the C3D file format has been its resistance to
the problems of technological obsolescence. The format of the media used to store
C3D files has changed significantly over the current lifetime of the C3D file format,
from 9-track ANSI magnetic tape, 2.5Mb hard disks (DEC RK-05s), and 8-inch
floppy disks to the current DVD disk and CD-ROM media. Yet C3D files written in
1987 on a PDP-11 and stored on an RK-05 can, in general, be read by any modern
C3D application. This achievement can be matched by few other applications in any
industry. Modern software applications, from motion capture vendors that created
the C3D files over ten years ago, can rarely read their own original raw data files –
yet they continue to read and process data stored in the C3D file format.

Hardware devices and software applications used to manipulate and store digital
information such as C3D files have increasingly shorter lifetimes – often no more
than two to three years for software, slightly longer for hardware devices. Each time
that a vendor introduces a new version with a slightly different file format, more
information becomes inaccessible. In this environment, the C3D file format has
become, in many cases, the only means of preserving data in a digitally accessible
form over the length of time required by many clinical studies as well as other
archival and legal requirements.

It is worth noting at this point, that many C3D applications written in the early
1990’s have become obsolete, or are no longer supported by the original
manufacturer. This has been almost universally due to problems with the original
programmers’ limited understanding of the C3D file format or the use of coding
models that failed to anticipate the storage capabilities of the C3D format. As a
result, many customers have found that the applications that they have been relying
on for years have suddenly become obsolete and must be replaced – this is a problem
for the programmers, not the end-users as their original C3D files continue to be
accessible.

Insist that all software
applications demonstrate
full C3D compatibility and
include documentation.

It is strongly recommended that any organization purchasing software that claims
“C3D compatibility” should evaluate the claims and compatibility before any final
purchasing decision. Applications that fully implement the C3D format should
conform to the specification described in this document and should be able to access
data in a suite of sample files freely available from the C3D file site.

The history of the C3D file has shown that its design makes it relatively easy to
extend the format as Motion Capture hardware improves and new software
applications are developed. Active participation by the major vendors and interested
parties via the C3D list-server (currently with over 100 subscribers) will allow the
format to extend and embrace new developments.

This document will be updated as necessary and as the C3D format evolves.
Updated manuals will be placed on the C3D Internet web site at http://www.c3d.org
for public access.

The C3D File Format User Guide The Future of C3D • 121

http://www.c3d.org/

Header size..31
Internet sources14, 15, 21, 28, 29, 88, 95, 113, 118, 121
Interpolation gap ...33
Invalid 3D points...57, 61
Limitations ..26

Index Locked parameters ..48, 49, 52
Parameter data structure..48, 50
Parameter files ..45
Parameter format...46, 48
Parameter ID numbers ..49
Parameter record header..41, 50
POINT...50, 71

DATA_START parameter71, 72
DESCRIPTIONS parameter.....................................74
FRAMES parameter...73 Additional information14, 23, 24, 28, 29, 39, 43, 44 INITIAL_COMMAND parameter98 ANALOG LABELS parameter..73, 74 DESCRIPTIONS parameter 76 RATE parameter ..50, 72 GAIN parameter .. 101 SCALE parameter ..58, 72 GEN_SCALE parameter.................................... 77, 78 UNITS parameter ...74 LABELS parameter ... 76, 77 USED parameter ..71 OFFSET parameter .. 83, 84 X_SCREEN parameter...98 RATE parameter.. 85 Y_SCREEN parameter...98 SCALE parameter.. 78, 83 Programming Information.....................................45, 50 UNITS parameter... 85 Proposed format enhancements....... 32, 34, 37, 117, 118 USED parameter.. 75, 76 Reserved for future use ...32, 35 Analog data – integer.. 63 Residual information...57, 59 Application specific parameters 97 Resolution issues...65, 66 Binary formats .. 84 Scaling Factors 3, 32, 34, 59, 72, 78, 82, 87, 88, 94, 114 Block size24, 26, 31, 34, 39, 41, 55, 56, 115, 117 SEG C3D format DATA_LIMITS parameter51, 102 Data.. 25, 55, 114, 119 MARKER_DIAMETER parameter102 Header.. 24, 31, 114 Seg parameters ..101 Parameter ... 25, 39, 114 Support.. 14, 15, 19, 20, 29, 116 Creating a C3D file... 113 TRIAL Data storage – scaling issues 65 ACTUAL_END_FIELD parameter108 EVENT ACTUAL_START_FIELD parameter...................107 TIMES parameter .. 110 Trial parameters ..107 USED parameter.. 110 TYPE 1 force platforms ..93 Event Labels ... 32, 35, 36, 118 TYPE 2 force platforms ..93 Event parameters .. 109 TYPE 3 force platforms ..93 Event status... 36 TYPE 4 force platforms ..93 Events in the header...................... 35, 36, 109, 110, 118

Force platform parameters.................................... 86, 87
 Force Platform signals .. 94

FORCE_PLATFORM CAL_MATRIX parameter....................................... 94
CHANNEL parameter ... 93
CORNERS parameter .. 91
ORIGIN parameter .. 91
TYPE parameter .. 88
USED parameter.. 88
ZERO parameter.. 90

FORTRAN20, 26, 29, 36, 51, 52, 56, 70, 76, 103
Group format .. 47
Group ID numbers .. 47, 49, 51

 Index • 123

	Trademarks
	Revision History
	Changes and Errata
	January 17th, 2008
	January 25th, 2006
	July 20th, 2005
	July 6th, 2004
	February 16th 2003
	June 22nd 2002
	April 7th 2002
	October 28th 2001

	Redistribution
	Terms and Conditions

	Glossary of Terms
	3D Frame
	3D Point
	Integers and Bytes
	Analog Data Sample
	Camera Contribution
	Residual
	Parameters
	Block
	Section
	Records
	DEC, SGI/MIPS and Intel

	Foreword
	Introduction

	Preface
	About this manual
	Intended Audience
	An Important Warning
	Acknowledgements
	Disclaimer

	The C3D file format
	Introduction
	A Brief History
	Implementation

	The Basic C3D Structure
	Physical Measurements
	Parameter Information

	Overview
	General implementation
	C3D file description
	Header Section
	Parameter Section
	3D Data Section
	Summary

	Limitations
	Using Signed Numbers
	Using Unsigned Numbers
	Sample Rate Limitations

	Additional Information

	The Header Section
	C3D File Header
	Description
	Header events
	Event times
	Event status
	Event labels
	Event interpretation
	Notes for Programmers – C3D Header

	The Parameter Section
	Overview
	Parameter header
	Notes for Programmers - Parameters

	C3D Parameter Files
	Notes for programmers – Parameter Files

	Group and Parameter Formats
	Group Format
	Parameter Format
	Notes for programmers – Parameters and Groups

	Security

	The 3D/Analog Data Section
	Overview
	Description
	3D Data - Integer Format
	Notes for Programmers – Integer 3D Data

	3D Data – Floating-point Format
	Notes for Programmers – Floating Point 3D Data

	3D point Residuals
	Camera contribution mask
	Analog Data Storage
	Analog Data - Integer Format
	Notes for Programmers – Integer Analog Data

	Analog Data – Floating-point format
	Notes for Programmers – Floating Point Analog Data

	Scaling Resolution
	3D Point Data
	Analog Data

	Required Parameters
	Overview
	Signed vs. Unsigned C3D files

	The POINT group
	USED
	SCALE
	RATE
	DATA_START
	FRAMES
	LABELS
	DESCRIPTIONS
	UNITS

	The ANALOG group
	USED
	LABELS
	DESCRIPTIONS
	GEN_SCALE
	SCALE
	Calculating SCALE values for EMG systems
	Calculating SCALE values for load cells
	Calculating SCALE values for force plates

	OFFSET
	UNITS
	RATE
	FORMAT
	BITS

	The FORCE_PLATFORM group
	USED
	TYPE
	TYPE-1
	TYPE-2
	TYPE-3
	TYPE-4
	TYPE-5
	TYPE-6
	TYPE-7
	TYPE-11
	TYPE-12
	TYPE-21

	ZERO
	CORNERS
	ORIGIN
	TYPE-1
	TYPE-2
	TYPE-3
	TYPE-4

	CHANNEL
	CAL_MATRIX

	Application Parameters
	Overview
	The POINT Group
	INITIAL_COMMAND
	X_SCREEN
	Y_SCREEN
	MOVIE_DELAY
	LABELS2
	DESCRIPTIONS2
	TYPE_GROUPS
	ANGLES
	SCALARS
	SCALAR_UNITS
	POWERS
	POWER_UNITS
	FORCES
	FORCE_UNITS
	MOMENTS
	MOMENT_UNITS
	REACTIONS

	The ANALOG Group
	GAIN

	The SEG Group
	MARKER_DIAMETER
	DATA_LIMITS
	ACC_FACTOR
	NOISE_FACTOR
	ANGLE_ERROR_FACTOR
	PREDICTION_ERROR
	RESIDUAL_ERROR _FACTOR
	MAX_NOISE_FACTOR
	INTERSECTION_LIMIT

	The SUBJECT Group
	DIST_RADIUS
	WEIGHT
	TARGET_RADIUS

	The SUBJECTS Group
	IS_STATIC
	NAMES
	MODEL_PARAMS
	USES_PREFIXES
	LABEL_PREFIXES
	USED
	MARKER_SETS
	DISPLAY_SETS
	MODELS

	The MANUFACTURER Group
	COMPANY
	SOFTWARE
	VERSION

	Additional Parameters
	Unofficial extensions
	The TRIAL Group
	ACTUAL_START_FIELD
	ACTUAL_END_FIELD
	VIDEO_RATE_DIVIDER
	CAMERA_RATE
	DATE
	TIME

	The EVENT_CONTEXT Group
	USED
	ICON_IDS
	LABELS
	DESCRIPTIONS
	COLOURS

	The EVENT Group
	USED
	CONTEXTS
	LABELS
	DESCRIPTIONS
	TIMES
	SUBJECTS
	ICON_IDS
	GENERIC_FLAGS

	C3D file basics
	Creating a C3D file
	Header Section
	Parameter Section
	Data Section

	Reading a C3D file
	Hints and Clues

	The Future of C3D
	Discussion
	Label and Range Section
	General Data Sections

	Usability and Elegance
	Conclusion

	Index

