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Recent progress in the understanding of motor cortex function has
been achieved primarily by simultaneously recording motor cortex
neuron activity and the movement kinematics of the corresponding
limb. We have expanded this approach by combining high-quality
cortical single-unit activity recordings with synchronized recordings
of full-body kinematics and kinetics in the freely behaving cat. The
method is illustrated by selected results obtained from two cats tested
while walking on a flat surface. Using this method, the activity of 43
pyramidal tract neurons (PTNs) was recorded, averaged over 10 bins
of a locomotion cycle, and compared with full-body mechanics by
means of principal component and multivariate linear regression
analyses. Patterns of 24 PTNs (56%) and 219 biomechanical variables
(73%) were classified into just four groups of inter-correlated vari-
ables that accounted for 91% of the total variance, indicating that
many of the recorded variables had similar patterns. The ensemble
activity of different groups of two to eight PTNs accurately predicted
the 10-bin patterns of all biomechanical variables (neural decoding)
and vice versa; different small groups of mechanical variables accu-
rately predicted the 10-bin pattern of each PTN (neural encoding). We
conclude that comparison of motor cortex activity with full-body
biomechanics may be a useful tool in further elucidating the function
of the motor cortex.

I N T R O D U C T I O N

Progress in understanding motor cortex function has been
achieved largely by simultaneously recording the activity of
motor cortex neurons and the mechanics of corresponding
movements. Because of technical constraints, however, most
studies have used motor tasks with one, two, or three degrees
of freedom, such as manipulating objects with the hand (Evarts
1968), exertion of isometric forces (Ashe 1997), and reaching
by the arm (Georgopoulos et al. 1982). These types of studies
have revealed that the activity of the neuronal population of the
motor cortex is related to different mechanical variables of
motor tasks. For example, Evarts (1968) demonstrated in
monkeys executing simple wrist movements that the activity of
some neurons in the motor cortex was related to the activation
of wrist flexor and extensor muscles. Motor cortex activity has
also been found to be well correlated with other movement
variables, e.g., the direction and velocity of movement (Geor-
gopoulos et al. 1982; Moran and Schwartz 1999; respectively),
the direction and magnitude of the static force exerted by the

arm (Ashe 1997), the hand location in space (Sergio and
Kalaska 1997), the arm orientation (Scott and Kalaska 1997),
and the joint torque and power (Scott et al. 2001).

Mechanically constrained paradigms employed in the above-
mentioned studies have allowed for the accurate and detailed
determination of mechanical aspects of the task and their
comparison with motor cortex activity. The motor cortex may
also encode some parameters of multi-joint, full-body behavior
(e.g., Donchin et al. 2002; Kalaska and Drew 1993). Simulta-
neous recording of motor cortex activity and body biomechan-
ics in freely moving animals is required to test this suggestion,
however.

Methods for recording the activity of the motor cortex in
freely moving animals have been developed (Armstrong and
Drew 1984; Beloozerova and Sirota 1986; Buzsaki et al. 1989;
Girman 1973). Using these methods in cats revealed that the
activity of most pyramidal tract neurons (PTNs) during loco-
motion on a flat surface is rhythmically modulated with respect
to phases of the step cycle. A detailed movement analysis is
more challenging in freely moving animals than during tasks
with a limited number of degrees of freedom. For this reason,
motor cortex activity during unconstrained movements typi-
cally has been analyzed in conjunction with muscle activation
and simple kinematics of the contralateral limb (e.g., Drew
1988).

We believe that simultaneous recordings and analyses of
motor cortex activity and full-body biomechanics during un-
constrained animal behavior will provide a better understand-
ing of motor cortex functions. PTNs, which have widespread
connections onto the interneurons and motoneurons of a num-
ber of muscles of the contralateral limb (Georgopoulos and
Grillner 1989; Lawrence et al. 1985; Leblond et al. 2001;
Shinoda et al. 1986), are likely to control different aspects of
movement through complex spinal networks. In addition, ex-
tensive branching of corticospinal axons in the brain stem and
spinal cord (Armand 1982; Armand et al. 1985; Canedo 1997;
Futami et al. 1979) suggests that PTN activity may affect not
only the motor aspects of the contralateral limb but also those
of the other three limbs. Examples of such effects might
include full-body postural responses to voluntary gait modifi-
cations made by one limb during obstacle overstepping (Lavoie
et al. 1995) and posture correction responses on a tilting
surface (Beloozerova et al. 2005). Recently, encoding and
decoding of global movement variables have been reported for
neurons of the dorsal spinocerebellar tract (Bosco and Poppele
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elucidate the primary variables encoded in motor cortex activ-
ity. This might partly explain why this problem remains unre-
solved despite significant effort. In addition, the motor cortex
contains groups of cells that appear to encode different aspects
of motor behavior, including nonmotor aspects, in both extrin-
sic and different intrinsic (joint angle, muscle) coordinates
(Alexander and Crutcher 1990; Carpenter et al. 1999; Kakei et
al. 1999). Some of these cells might be among the 19 PTNs not
classified into the four groups by the principal component
analysis in this study. Still another problem is that the dis-
charge of some PTNs appears to encode different parameters
under different conditions (e.g., Beloozerova et al. 2005; Kakei
et al. 2003; Sergio and Kalaska 2003; Thach 1978).

Despite their limitations, correlation and in particular mul-
tivariate regression analyses (Hamm et al. 2001; Holdefer and
Miller 2002; Houk et al. 1987; Schwartz and Adams 1995;
Stein et al. 2004) have been used extensively and have pro-
vided valuable information regarding representations of move-
ment variables in motor cortex activity.

The developed method of simultaneously recording PTN
activity and full-body mechanics provided new information on
possible relationships between motor cortex activity and move-
ment biomechanics. The fact that 73% of the full-body me-
chanical variables were highly correlated with one of the four
eigenvectors, as revealed by the principal component analysis
(Fig. 8), indicates that these patterns are redundant, i.e., many
of the variables are closely correlated. As a consequence, a
comparison of a limited number of mechanical variables with
neural activity might yield misleading results. On the other
hand, activation patterns of only 56% of sampled PTNs could
be related to the four eigenvectors. The remaining 44% of
neurons have patterns that differ from the majority of full-body
mechanical variables and might encode information that is not
directly related to motor patterns. These PTN activation pat-
terns could also be related to muscles not sampled in this study.

Given the great number of mechanical variables obtained in
this study, perhaps it is not surprising that it was possible to
find subsets of variables that could accurately predict the firing
rate of each sampled PTN. Accurate predictions of mechanical
variables by the ensemble activity of a small number of PTNs
could also be explained by the majority of these variables
having relatively simple patterns (with 1–3 peaks per cycle).
However, whether or not these predictions are real and not
caused by chance will require further studies.

Limitations and advantages of the method

The main limitations of the described experimental approach
are the high complexity of the employed experimental proce-
dures and the huge volume of information to be analyzed. The
experimental procedures involve a combination of two inno-
vative methods, analysis of full-body mechanics, and recording
of PTN activity in unrestrained animals and thus require
expertise in both areas of research. The motion analysis re-
quires digitizing the coordinates of 28 markers on the animal
body and is time consuming, but it can be substantially sim-
plified by using motion analysis systems with automatic digi-
tizing capabilities, which are commercially available. The
results presented in this report show that despite the limita-
tions, the new experimental approach is manageable and can
yield unique and useful data on the functions of PTNs.

In particular, the developed method allowed us for the first
time to compare the kinetics (ground reaction forces, joint
forces, moments, power) of the contralateral limb with PTN
activity during unconstrained cat locomotion, to obtain and
compare PTN activity with the kinematics and kinetics of the
other three limbs, and to obtain and compare PTN activity with
movement characteristics of the general center of mass in the
cat. These new developments have the potential to reveal new
information about the functions of the motor cortex. We wish
to stress, however, that any single method must be comple-
mented with other techniques to obtain any definite informa-
tion regarding physiological functions.
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